Lanthanide-doped Sr₂ScF₇ nanocrystals: controllable hydrothermal synthesis, growing mechanism and tunable up/down conversion luminescence properties

Bei Zhao,^a Dingyi Shen,^a Jun Yang,^{*a} Shanshan Hu,^a Xianju Zhou^b and Jianfeng Tang^c

^aSchool of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China. ^bSchool of Mathematics and Physics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China. ^cFaculty of Materials and Energy, Southwest University, Chongqing 400715, China.

Formula	Sr_2ScF_7		
Formula weight	353.18		
Crystal system	monoclinic		
Space group	P21/c (#14)		
a/Å	5.450		
b/Å	12.190		
c/Å	8.236		
a/°	90		
β/°	89.53		
$\gamma/^{\circ}$	90		
$V/Å^3$	547.1		
Ζ	4		
ρ_{calc}/gcm^{-3}	4.287		
µ/cm ⁻¹	201.32		
Sinθmax/λ	0.8071		
Rint	0.051		
$Rw(F_0)$	0.048		
$R(F_0)$ for $F_{02} > 3a(F_{02})$	0.045		

Table S1 Crystallographic data for Sr₂ScF₇.

P P					
doped $Ln^{3+}(30\%)$	Length (nm)	Width (nm)			
no	120	50			
Lu	80	40			
Yb	50	38			
Tm	35	30			
Dy	33	29			
Tb	31	26			
Eu	24	23			
Sm	20	20			
La	15	15			

Table S2 Length and diameter of the obtained products from the SEM images in Fig. 2.

	Excitation	Emission		Excitation	Emission
	peaks(nm)/transition	peaks(nm)/transition		peaks(nm)/transition	peaks(nm)/transition
Sr ₂ ScF ₇ :6%Ce ³⁺	259,294/4f-5d	354/5d-4f	Sr ₂ ScF ₇ :12%Tb ³⁺	222,265,284,351,	489/ ⁵ D ₄ - ⁷ F ₆
				$367/4f_8-4f_75d^1$	$546/{}^{5}D_{4}-{}^{7}F_{5}$
					$586/^{5}D_{4}-^{7}F_{4}$
					$624/{}^{5}D_{4}$ - ${}^{7}F_{3}$
Sr ₂ ScF ₇ :9%Eu ³⁺	328/ ⁷ F ₀ - ⁵ H ₆	$594/^{5}D_{0}-^{7}F_{1}$	Sr ₂ ScF ₇ :1%Sm ³⁺	$359/^{6}H_{5/2}-^{4}K_{17/2}$	$562/^4G_{5/2}$ - $^6H_{5/2}$
	$362/{}^{7}F_{0}-{}^{5}D_{4}$	$619/{}^{5}D_{0}-{}^{7}F_{2}$		$372/^{6}H_{5/2}-^{4}D_{15/2}$	$603/^4G_{5/2}$ - $^6H_{7/2}$
	$381/{}^{7}F_{0}-{}^{5}G_{2}$			$399/^{6}H_{5/2}-^{4}K_{11/2}$	$651/^4G_{5/2}$ - $^6H_{9/2}$
	$394/{}^{7}F_{0}-{}^{5}L_{6}$				
	$465/{}^{7}F_{0}-{}^{5}D_{2}$				
$Sr_2ScF_7:1\% Dy^{3+}$	$294/^6H_{5/2}\text{-}{}^4D_{7/2}$	$482,492/{}^4F_{9/2}\text{-}{}^6H_{15/2}$	$Sr_2ScF_7:1\%Er^{3+}$	$364/^4 I_{15/2} \textbf{-} {}^4 G_{7/2}$	$524/^2H_{11/2}\text{-}{}^4I_{15/2}$
	$324^{/6}H_{5/2}\text{-}{}^6P_{3/2}$	$577/{}^4F_{9/2}\text{-}{}^6H_{13/2}$		$378/^4I_{15/2}\text{-}{}^4G_{11/2}$	$547,558/^4S_{3/2}\text{-}^4I_{15/2}$
	$348/^6H_{5/2}\text{-}{}^6P_{7/2}$			$405/^4 I_{15/2} \text{-}{}^2 H_{9/2}$	
	$364/^6H_{5/2}\text{-}{}^6P_{7/2}$				
	$384/^6H_{5/2}\text{-}{}^4M_{21/2}$				
$Sr_2ScF_7{:}2\%Ho^{3+}$	$361/{}^{5}I_{8}$ - ${}^{5}G_{2}$	$540,548/{}^{5}F_{4},{}^{5}S_{2}-{}^{5}I_{8}$	$Sr_2ScF_7{:}2\% Er^{3+}$	$357/^{3}H_{6}-^{1}D_{2}$	$451/^{1}D_{2}-^{3}F_{4}$
	$384/{}^{5}I_{8}$ - ${}^{5}G_{4}$				
	$417/{}^{5}I_{8}-{}^{5}G_{5}$				
	$452/{}^{5}I_{8}$ - ${}^{5}F_{1}$, ${}^{5}G_{6}$				
	485/ ⁵ I ₈ - ⁵ G ₂				

Table S3 Summary of the photoluminescence properties of Sr_2ScF_7 :Ln ³⁺ (Ln = Ce, Tb, Eu, Sm
Dy, Er, Ho, and Tm) nanocrystals.

Fig. S1 The photoluminescence emission intensity of Ln^{3+} ions as a function of their doping concentrations in Sr_2ScF_7 nanocrystals, respectively. The optimum concentrations of Ln^{3+} are determined to be as 6% (Ce³⁺), 12% (Tb³⁺), 9% (Eu³⁺), 1% (Sm³⁺), 1% (Dy³⁺), 1.0 (Er³⁺), 2% (Ho³⁺), 2% (Tm³⁺), respectively.

Fig. S2 The CIE chromaticity coordinates of Sr₂ScF₇: (A) 6% Ce³⁺, (B)12% Tb³⁺, (C) 9% Eu³⁺, (D) 1% Sm³⁺, (E) 1% Dy³⁺, (F) 1% Er³⁺, (G) 2% Ho³⁺, (H) 2% Tm³⁺, respectively.

Fig. S3 The CIE chromaticity coordinates of (a) $Sr_2ScF_7:10\%Yb^{3+}$, $2\%Tm^{3+}$, (b) $Sr_2ScF_7:1\%Er^{3+}$, (c) $Sr_2ScF_7:10\%Yb^{3+}$, $1\%Er^{3+}$ nanocrystals.

Fig. S4 The decay curves of ${}^{3}H_{4} \rightarrow {}^{3}H_{6}$ of Tm^{3+} in the $Sr_2ScF_7:10\%Yb^{3+},1\%Tm^{3+}$ and $S_{r2}ScF_7:10\%Yb^{3+},1\%Er^{3+},1\%Tm^{3+}$ nanocrystals.