Supporting Information

Ultra-Broadband Optical Amplification at Telecommunication Wavelengths Achieved by Bismuth-Activated Lead Iodide Perovskites

Yang Zhou, ^a Zi-Jun Yong, ^a Wei Zhang, ^b Ju-Ping Ma, ^a Aditya Sadhanala, ^c Ya-Meng Chen, ^a Bo-Mei Liu, ^a Yi Zhou, ^a Bo Song, ^a and Hong-Tao Sun*^a

^a College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Soochow University, Suzhou 215123, China

^b Advanced Technology Institute, University of Surrey, Guildford GU2 7XH, United Kingdom

^c Cavendish Laboratory, Department of Physics, University of Cambridge, 19 JJ
 Thomson Avenue, Cambridge CB3 0HE, United Kingdom

Corresponding Author

*Email: timothyhsun@gmail.com.

Figure S1. Energy dispersive X-ray spectroscopy (EDX) of the PbAc₂-derived film.

Figure S2. Absorption spectra of the pristine, 0.01% and 0.05% Bi-doped films. We note that in the NIR region, no obvious absorption bands occur. Note that we took the absorption spectra in this range by a a UV-vis-NIR spectrophotometer (Cary 5000, Agilent), because our PDS measurement cannot extend to such wavelengths.

Figure S3. (a) FWHMs and (b) PL peak of the PL spectra taken at different temperatures for the $PbAc_2$ -derived film.

Figure S4. (a) FWHMs and (b) PL peak of the NIR PL spectra taken at different temperatures for the $PbAc_2$ -derived film.

Figure S5. Time-resolved PL dynamics measurements at different temperatures for the PbAc₂-derived film. The solid line was drawn to guide the eye.

Figure S6. Cross-section SEM image of the PbAc₂-derived film.

Figure S7. Schematic of the experimental setup for the light amplification experiment.

Table S1. The calculated average lifetimes of the PbAc₂-derived film at different temperatures. The emission wavelengths are the PL peak of the NIR PL spectra.

Temperature (K)	260	160	120	80	50	10
Emission wavelength (nm)	116	1226	1276	1295	1304	1324
	5					
Average lifetime ^a (ns)	19	22	32	49	66	76
			τ _{ave}	$=\frac{\int_{0}^{\infty}tI(t)dt}{\frac{1}{2}}$	$\frac{dt}{dt} = \frac{\int_{0}^{\infty} texp}{\frac{1}{2}}$	$\left(-\frac{t}{\tau} \right) dt$
a. Average lifet	time (τ_{av}	e) is calcula	ited by:	$\int_{0}^{\infty} I(t) dt$	$\int_{0}^{\infty} \exp \left(\int_{0}^{\infty} \exp \left(\int_{0$	$\left(-\frac{t}{\tau}\right)dt$.

 Table S2. Comparison of optical amplification results using different Bi-activated

 materials as gain media.

	Laser	Pumping power	Emission	Thickness	Max.gain coefficient	Reference
Sample	source	(W)	wavelength	(mm)	(cm ⁻¹)	
	(nm)		(nm)			
1Bi ₂ O ₃ -7Al ₂ O ₃ -92SiO ₂ glass	810	1	1307.5	1	0.62	2
1Bi ₂ O ₃ -7Al ₂ O ₃ -91SiO ₂ -Li ₂ O glass	808	0.97	1315	1	0.32	3
1Bi ₂ O ₃ -5Al ₂ O ₃ -20SrO-75GeO ₂ glass	808	1.12	1272	1	1.03	4
$82P_2O_5$ -17Al ₂ O ₃ -1Bi ₂ O ₃ -3.5Yb ₂ O ₃ glass	980	1	1272	1	2.62	5
PbAc ₂ -derived perovskites (77 K)	450	1.18×10-3	1310	3.07×10 ⁻⁴	1.2×10 ⁵	This work
PbAc2-derived perovskites (296 K)	450	1.20×10-2	1310	3.07×10 ⁻⁴	7.1×10 ³	This work

Table S3. PL QEs of the PbAc₂-derived film at cryogenic temperatures.

Temperature (K)	296	220	160	120	80	50	10
PL QE (%)	0.019	0.089	0.28	2.17	5.57	7.87	9.93

References

- J. R. Lakowicz, *Principles of fluorescence spectroscopy*, 3rd edn, Springer Science+Business Media, New York, 2006.
- 2. Y. S. Seo, Y. Fujimoto and M. Nakatsuka, Opt. Commun., 2006, 266, 169-171.

- S. F. Zhou, H. F. Dong, H. P. Zeng, J. H. Hao, J. X. Chen and J. R. Qiu, *J. Appl. Phys.*, 2008, 103, 103532-103535.
- S. F. Zhou, H. F. Dong, H. P. Zeng, G. F. Feng, H. C. Yang, B. Zhu, J. R. Qiu, Appl. Phys. Lett., 2007, 91, 061919.
- J. Ruan, E. Wu, H. P. Zeng, S. F. Zhou, G. Lakshminarayana and J. R. Qiu, *Appl. Phys. Lett.*, 2008, **92**, 101121.