Supporting Information

TITLE: High Performance Red Phosphorescent Organic Electroluminescent Devices with Characteristic Mechanisms by Utilizing Terbium or Gadolinium Complex as Sensitizer

Rongzhen Cui^a, Weiqiang Liu^a, Liang Zhou^a, *, Xuesen Zhao^a, Yunlong Jiang^a, Youxuan Zheng^b, *, and Hongjie Zhang^a, *

^a State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China

^b State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China

^{*} Correspondence to: State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People's Republic of China. Tel.: +86 431 85262127; fax: +86 431 85685653.

E-mail address: zhoul@ciac.ac.cn (L. Zhou), yxzheng@nju.edu.cn (Y. Zheng), hongjie@ciac.ac.cn (H. Zhang).

Figure S1. EL efficiency-current density (η -*J*) characteristics of co-doped devices based on mCPPO1 with Tb(acac)₃(phen-Cl) at different co-doping concentrations. Insert: Brightness-current density-voltage (*B*-*J*-*V*) characteristics of co-doped devices based on mCPPO1 with Tb(acac)₃(phen-Cl) at different co-doping concentrations.

Figure S2. EL efficiency-current density (η -*J*) characteristics of co-doped single-EML devices based on 26DCzPPy with Tb(acac)₃(phen-Cl) at different co-doping concentrations. Insert: Brightness-current density-voltage (*B*-*J*-*V*) characteristics of co-doped single-EML devices based on 26DCzPPy with Tb(acac)₃(phen-Cl) at different co-doping concentrations.

Figure S3. EL efficiency-current density $(\eta$ -*J*) characteristics of co-doped single-EML devices based on 26DCzPPy with Gd(TTA)₃phen at different co-doping concentrations. Insert: Brightness-current density-voltage (*B*-*J*-*V*) characteristics of co-doped single-EML devices based on 26DCzPPy with Gd(TTA)₃phen at different co-doping concentrations.

Figure S4. (a) Normalized PL spectra of 26DCzPPy and EL spectra of Tb(acac)₃(phen-Cl) co-doped devices with 50 nm HTL/50 nm ETL (Tb-0.4 wt%), 50 nm HTL/65 nm ETL (device C), and 40 nm HTL/65 nm ETL (device F) at the current density of 10 mA/cm². Insert: Comparison of the relative intensity of 26DCzPPy emission in these devices. (b) Normalized EL spectra and CIE coordinates of device D with increasing operation voltage.