Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary information for

Stable N-Heterocyclic Carbene (NHC) Cyclometalated (C^C) Gold(III) Complexes as Blue – Blue Green Phosphorescence Emitters

Tobias von Arx, ⁺ Alexander Szentkuti,⁺ Thomas N. Zehnder, Olivier Blacque and Koushik Venkatesan^{*}

^aDepartment of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland. ⁺ Equal contribution **Email(*):** venkatesan.koushik@chem.uzh.ch

Table of Contents

Experimental section	3
Crystal structure determinations	17
Photophysical studies	31
Thermogravimetric analysis	34
Computational studies	35

Experimental section

Material and Methods: ¹H and ¹³C{¹H} NMR spectra were recorded on a Bruker AV-500 (500 MHz), Bruker AV-400 (400 MHz) or Varian Mercury (300 MHz) spectrometer. ¹⁹F NMR spectra were recorded on a Varian Mercury (300 MHz) spectrometer. Chemical shifts (δ) are reported in parts per million (ppm) referenced to tetramethylsilane (δ 0.00 ppm) using the residual protio solvent peaks as internal standards (¹H NMR experiments) or the characteristic resonances of the solvent nuclei (¹³C NMR experiments). ¹⁹F NMR was referenced to CFCl₃ (δ 0.00 ppm). Coupling constants (J) are quoted in Hertz (Hz) and the following abbreviations are used to describe the signal multiplicities: s (singlet); d (doublet); t (triplet); g (guartet); m (multiplet); dd (doublet of doublet); td (triplet of doublet); dt (doublet of triplet). Proton and carbon assignments have been made using routine one and two dimensional NMR spectroscopies where appropriate. IR measurements were carried out on a SpectrumTWO FT-IR Spectrometer (Perkin–Elmer) equipped with a Specac Golden GateTM with frequencies (v) quoted in wavenumbers (cm⁻¹). Elemental microanalysis was carried out with Leco CHNS-932 analyser. TLC analysis was performed on precoated Merck Silica Gel 60F₂₅₄ slides and visualised by luminescence quenching either at (short wavelength) 254 nm or (long wavelength) 365 nm. Chromatographic purification of products was performed on a short column (length 15.0 cm: diameter 1.5 cm) using forced flow of eluent. UV-Vis measurements were carried out on a Perkin-Elmer Lambda 19 UV-Vis spectrophotometer. Emission spectra were acquired on an Edinburgh FLS920 spectrophotometer using 450W Xenon lamp excitation by exciting at the longest-wavelength absorption maxima. All samples for emission spectra were degassed by at least three freeze-pump-thaw cycles in an anaerobic cuvette and were pressurized with N₂ following each cycle. 77 K emission spectra were acquired in frozen 2-methyltetrahydrofuran (2-MeTHF) glass. Phosphorescence lifetimes were measured by time-correlated single photon counting method (TCSPC) performed on an Edinburgh FLS920 spectrophotometer, using nF900 lamp source at 40000 Hz frequency with 15 nm excitation and 15 nm emission slit widths. Absolute quantum yields were measured using an integrating sphere from Edinburgh Instruments. YAG:Ce (powder) was used as a calibration reference with $\phi_{em} = 97\%$. Microwave reactions were carried out in an Anton Paar Monowave 300. Thermogravimetric analysis (TGA) was done using a NETZSCH STA 449C instrument. Thin films were spin coated on a guartz slide (12 x 12 mm)

from a dichloromethane solution consisting of a mixture of poly(methyl methacrylate) (PMMA) and the corresponding Au(III) complex.

Commercially available reagents were purchased from Aldrich, Chemie-Brunschwig and Fluorochem were used as such without further purification. Sodium tetrachloroaurate(III) dihydrate was purchased from Strem chemicals.

General remarks. All the reactions were performed in a Schlenk flask under N_2 atmosphere, except the microwave reactions. This type of reaction was carried out in G30 microwave tubes. The gold(III) dichloro precursors *cis*-[(*pmi*)Au(Cl₂)], *cis*-[(*dbfmi*)Au(Cl₂)], *cis*-[(*flzmi*)Au(Cl₂)] were used without further purification.

1-phenyl-3-methylimidazol-2-ylidene (= pmi) series

Scheme S1. Synthetic pathways for the gold complexes of the *pmi*-series.

3-methyl-1-phenyl-1H-imidazol-3-ium iodide (A). A was synthesized according to literature procedure.

[(pmi)Au(CI)] (A1). A (2.00 g, 6.990 mmol) and Ag₂O (1.62 g, 6.990 mmol) were suspended in dry CH₂Cl₂ (150 mL). The grey/brownish suspension was stirred over night at ambient temperature in the absence of light. [(SMe₂)Au(CI)] (2.06 g, 6.990 mmol) was dissolved in dry CH₂Cl₂ (50 mL) and cannulated the next day to the silver suspension and stirred for 4 hours at room temperature in the dark. The black suspension was filtered over celite and the solvent was removed under reduced pressure. The orange/brownish residue was washed with hexane (3 x 10 mL) resulting in an orange solid. Yield = 1.47 g, 3.775 mmol, 54%. ¹H NMR (500 MHz,

CD₂Cl₂, 300 K): δ 3.94 (s, 3H, N-CH₃), 7.13 (d, ³J_{H-H} = 2 Hz, 1H), 7.24 (d, ³J_{H-H} = 2 Hz, 1H), 7.51-7.56 (m, 2H), 7.64-7.67 (m, 2H); ¹³C {¹H}NMR (125 MHz, CD₂Cl₂, 300 K): δ 39.2, 122.3, 122.9, 125.5, 129.7, 130.1, 139.7, 171.5; Elemental analysis (%) calcd for: C₁₀H₁₀AuClN₂: C, 30.75; H, 2.58; N, 7.17; Found: C, 30.59; H, 2.66; N, 6.99.

[(pmi)Au(Cl)₃] (A2). A1 (1.00 g, 2.560 mmol) was dissolved in dry CH₂Cl₂ (200 mL) and cooled to 0 °C. Dichloroiodo benzene (PhICl₂) (0.84 g, 3.072 mmol) was added to the yellow solution and the reaction mixture was stirred for 20 minutes at 0 °C in the absence of light. Afterwards, the mixture was allowed to warm to room temperature and was stirred for 24 hours resulting in an orange solution. The solvent was removed *in vacuo* to yield in a brownish solid as the crude product. The crude was washed with Et₂O (2 x 100 mL) to afford the title compound as a grey solid. Yield = 1.10 g, 2.380 mmol, 93%. ¹H NMR (500 MHz, CD₂Cl₂, 300 K): δ 4.05 (s, 3H, N-CH₃), 7.35 (d, ³J_{H-H} = 2 Hz, 1H), 7.40 (d, ³J_{H-H} = 2 Hz), 7.62 (s, 5H); ¹³C {¹H}NMR (125 MHz, CD₂Cl₂, 300 K): δ 38.6, 125.3, 125.6, 126.3, 130.8, 131.2, 137.3, 142.0; Elemental analysis (%) calcd for: C₁₀H₁₀AuCl₃N₂: C, 26.02; H, 2.18; N, 6.07; Found: C, 25.80; H, 2.16; N, 5.99.

cis-[(*pmi*)Au(Cl)₂] (1). The reaction was performed in the microwave. A2 (0.100 g, 0.216 mmol) was suspended in H₂O (10 mL) with 10 wt% of PhICl2 (0.010 g). The reaction mixture was heated to 175 °C under continuous stirring for 15 minutes (2 cycles). The brown suspension was filtered and washed with H₂O (100 mL), Et₂O (100 mL) and CH₂Cl₂ (100 mL). Afterwards the grey solid was washed additionally with EtOAc (1'000 mL), the solvent was removed under reduced pressure and the final product was obtained as a white solid. Yield = 0.044 g, 0.104 mmol, 47%. ¹H NMR (400 MHz, DMSO-*d*₆, 300 K): δ 4.01 (s, 3H, N-CH₃), 7.64-7.72 (m, 4H), 7.98 (d, ³*J*_{H-H} = 2.0 Hz, 1H), 8.10 (d, ³*J*_{H-H} = 2.0 Hz, 1H); ¹³C {¹H}NMR (125 MHz, DMSO-*d*₆, 300 K): δ 37.5, 114.7, 116.7, 125.5, 126.1, 126.5, 129.4, 130.2, 132.1, 136.7.

cis-[(*pmi*)Au(C₆F₅)₂] (1a). To iodopentafluorobenzene (0.044 g, 0.15 mmol, 0.02 mL) in dry Et₂O (20 mL), 1.6 M *n*-BuLi in hexanes (0.010 g, 0.160 mmol, 0.1 mL) was added slowly via syringe at -78°C. The mixture was stirred for 20 minutes at that temperature and cannulated to another suspension containing 1 (0.030 g, 0.070 mmol) in dry Et₂O (20 mL), precooled to -78°C. The reaction mixture was kept at -78°C for 20 min, was allowed to warm to ambient temperature and stirred for 2 hours. The reaction was quenched with H₂O (50 mL), washed with brine (50 mL) and

extracted with EtOAc/CH₂Cl₂ = 1/1 (2 x 50 mL). The organic layer was dried over MgSO₄, filtered and the solvent was removed *in vacuo* to give a yellow solid as the crude product. The residue was purified by column chromatography on silica gel (eluent: Hexane/EtOAc = 3/1) to afford the title compound as a white solid. Yield = 0.031 g, 0.040 mmol, 65%. ¹H NMR (500 MHz, CD₂Cl₂, 300 K): δ 3.45 (s, 3H, N-CH₃), 6.88 (d, ³J_{H-H} = 7.5 Hz, 1H), 7.10 (t, ³J_{H-H} = 7 Hz, 1H), 7.31-7.28 (m, 2H), 7.70 (s, 1H); ¹³C {¹H}NMR (125 MHz, CD₂Cl₂, 300 K): δ 39.2, 76.0, 113.1, 123.4, 128.3, 128.5, 135.8, 142.1, 145.7; ¹⁹F NMR (376 MHz, CD₂Cl₂, 300 K): δ -120.80-(-120.89) (m, 2 *o*-F), -121.70-(-121.77) (m, 2 *o*-F), -158.90 (t, *J* = 19.48 Hz, 1 *p*-F), -159.91 (t, *J* = 19.63 Hz, 1 *p*-F), -162.03-(-162.15) (m, 2 *m*-F), -162.97-(-163.09) (m, 2 *m*-F); Elemental analysis (%) calcd for: C₂₂H₉AuF₁₀N₂□¹/₃ C₆H₁₄: C, 40.20; H, 1.92; N, 3.91; Found: C, 40.21; H, 1.85; N, 3.72.

cis-[(pmi)Au(C=CC₆H₅F)₂] (1b). p-Fluorophenylacetylene (0.019 g, 0.160 mmol, 18.5 μ L) was dissolved in dry CH₂Cl₂ (15 mL). NEt₃ (0.016 g, 0.16 mmol, 22 μ L) and Cul (0.031 g 0.160 mmol) were added to the solution and the resulting mixture was stirred for 1.5 hours at ambient temperature. 1 (0.030 g, 0.070 mmol) was added and after stirring for 2.5 hours at room temperature, the reaction was quenched with H₂O (15 mL). The mixture was extracted with CH_2Cl_2 (2 x 50 mL) and washed with brine (50 mL). The organic phase was dried over MgSO₄, filtered and the solvent was removed under reduced pressure to afford a yellowish/white solid as the crude product. The crude was washed additionally with hexane (3 x 5 mL) and further purified by column chromatography on silica gel (eluent: EtOAc/Hexane = 2/1). After slow diffusion crystalisation ($CH_2CI_2/Hexane = 1/1$) the title compound was obtained as a white solid. Yield = 0.023 g, 0.038 mmol, 55%. ¹H NMR (500 MHz, CD₂Cl₂, 300 K): δ 4.37 (s, 3H, N-CH₃), 6.98-7.04 (m, 4H), 7.09 (s, 1H), 7.25 (t, ${}^{3}J_{H-H}$ = 8.0 Hz, 2H), 7.32 (t, ${}^{3}J_{H-H}$ = 8.0 Hz, 1H), 7.44 (t, ${}^{3}J_{H-H}$ = 6.0 Hz, 2H), 7.49 (s, 1H), 7.54 (t, ${}^{3}J_{H-H}$ = 6.0 Hz, 2H), 8.33 (d, ${}^{3}J_{H-H}$ = 7.5 Hz, 1H); ${}^{13}C$ { ${}^{1}H$ }NMR (125 MHz, CD₂Cl₂, 300 K): δ 39.0, 98.4, 102.2, 102.8, 108.4, 112.6, 115.5, 115.6, 116.2, 123.0, 124.2, 127.6, 128.0, 133.4, 133.5, 133.7, 134.0, 137.7, 140.0, 145.9, 161.1, 161.2, 163.0, 163.1, 166.8, 171.2; ¹⁹F NMR (376 MHz, CD₂Cl₂, 300 K): δ -115.79 (m, 1 F), -115.89 (m, 1 F); Elemental analysis (%) calcd for: $C_{26}H_{17}AuF_2N_2 \Box^{1}/_{6}$ CH₂Cl₂: C, 51.82; H, 2.88; N, 4.62; Found: C, 52.06; H, 2.77; N, 4.48; IR (ATR-FTIR): ν̃(-C=C-) = 2152 cm⁻¹, 2141 cm⁻¹.

 $cis-[(pmi)Au(C_6F_5)(C=CC_6H_5F)]$ (1c). p-Fluorophenylacetylene (0.030 g, 0.290 mmol, 33 μ L) was dissolved in dry CH₂Cl₂ (50 mL). NEt₃ (0.029 g, 0.290 mmol, 40 μ L), Cul (0.055 g, 0.290 mmol) were added in this order and the reaction mixture was stirred for 1 hour at room temperature. 1d (0.150 g, 0.270 mmol) was added to the yellow suspension and the reaction progress was monitored by means of TLC. After completion, the reaction was guenched with H_2O (50 mL), extracted with CH_2CI_2 (2 x 100 mL) and washed with brine (100 mL). The organic phase was dried over MgSO₄, filtered and the solvent was removed under reduced pressure to give the title compound as a yellow solid. Yield = 0.102 g, 0.159 mmol, 58%. ¹H NMR (500 MHz, CD_2CI_2 , 300 K): δ 3.42 (s, 3H, N-CH₃), 6.97 (t, ${}^{3}J_{H-H}$ = 8.5 Hz, 2H), 7.03 (d, ${}^{3}J_{H-H}$ = 1.0 Hz, 1H), 7.28-7.31 (m, 2H), 7.35-7.40 (m, 3H), 7.54 (d, ${}^{3}J_{H-H}$ = 2.0 Hz, 1H), 8.35 (d, ³*J*_{H-H} = 7 Hz, 1H); ¹³C {¹H}NMR (125 MHz, CD₂Cl₂, 300 K): δ 38.1, 97.9, 103.2, 112.7, 115.4, 115.6, 116.5, 122.7, 122.7, 124.3, 128.0, 128.3, 133.6, 133.7, 137.4, 142.3, 145.7, 161.2, 163.1, 167.7; ¹⁹F NMR (376 MHz, CD₂Cl₂, 300 K): δ -115.66 (s, 1 *p*-F), -121.93-(-122.03) (m, 2 o-F), -160.73-(-160.79) (m, 1 p-F), -163.50-(-163.63) (m, 2 *m*-F); Elemental analysis (%) calcd for: C₂₄H₁₃AuF₆N₂: C, 45.02; H, 2.05; N, 4.37; Found: C, 44.79; H, 2.19; N, 4.31; IR (ATR-FTIR): v(-C=C-) = 2033 cm⁻¹.

cis-[(*pmi*)Au(C₆F₅)(CI)] (1d). AgC₆F₅ (0.145 g, 0.527 mmol) was dissolved in dry CH₂Cl₂ (20 mL) under exclusion of light and cannulated to a suspension of 1 (0.200 g, 0.471 mmol) in dry CH₂Cl₂ (20 mL). The reaction was stirred in the dark 24 hours at ambient temperature. After quenching with H₂O (50 mL) the mixture was extracted with CH₂Cl₂ (2 x 50 mL) and washed with brine (50 mL). The organic phase was dried over MgSO₄, filtered and the solvent was removed *in vacuo*. The reddish/brown residue was washed with hexane (5 x 5 mL) and purified by column chromatography on silica gel (eluent: EtOAc) to afford the title compound as a white solid. Yield = 0.197 g, 0.353 mmol, 75%. ¹H NMR (500 MHz, CD₂Cl₂, 300 K): δ 3.42 (s, 3H, N-CH₃), 7.10 (d, ³J_(H-H) = 2 Hz, 1H), 7.27 (dd, ³J_(H-H) = 7.5 Hz; ⁴J_(H-H) = 1.5 Hz, 1H), 7.37-7.34 (m, 2H), 7.57 (d, ³J_(H-H) = 2 Hz, 1H), 8.18 (dd, ³J_(H-H) = 7 Hz; ⁴J_(H-H) = 1.5 Hz, 1H); ¹³C {¹H}NMR (125 MHz, CD₂Cl₂, 300 K): δ 30.0, 112.5, 116.4, 124.5, 127.7, 128.6, 133.4; ¹⁹F NMR (376 MHz, CD₂Cl₂, 300 K): δ -123.04-(-123.23) (m, 2 *o*-F), -159.72-(-159.82) (m, 1 *p*-F), -162.71-(-162.87) (m, 2 *m*-F); Elemental analysis (%) calcd for: C₁₆H₉AuClF₅N₂: C, 34.52; H, 1.63; N, 5.03; Found: C, 34.74; H, 1.61; N, 4.91.

1-(dibenzofuranyl)-3-methylimidazol-2-ylidene (= dbfmi) series

Scheme S2. Synthetic pathways for the gold complexes of the dbfmi-series.

3-Dibenzofuran-4-yl-1-methyl-3H-imidazole-1-ium-iodide (B). B was synthesized according to literature procedure.

[(*dbfmi***)Au(Cl)] (B1). B** (1.50 g, 3.987 mmol) was dissolved in dry CH_2Cl_2 (150 mL) and Ag₂O (0.924 g, 3.987 mmol) was added. The suspension was stirred over night at room temperature in the absence of light. The next day, [(SMe₂)Au(Cl)] (1.17 g, 3.987 mmol) was dissolved in dry CH_2Cl_2 (50 mL), cannulated to the silver suspension and stirred for 4 hours at ambient temperature in the dark. The resulting black suspension was filtered over celite and the solvent was removed under reduced pressure to afford the title compound as an orange solid. Yield = 1.08 g, 2.240 mmol, 57%. ¹H NMR (500 MHz, CD_2Cl_2 , 300 K): δ 3.99 (s, 3H, N-CH₃), 7.25 (d, ³J_{H-H} = 2 Hz, 1H), 7.44 (dt, ³J_(H-H) = 7.5 Hz; ⁴J_(H-H) = 1.0 Hz, 1H), 7.51-7.59 (m, 3H), 7.92 (dd, ³J_(H-H) = 8.0 Hz; ⁴J_(H-H) = 1.0 Hz, 1H), 8.06 (d, ³J_{H-H} = 7.5 Hz, 1H), 8.12 (dd,

 ${}^{3}J_{(H-H)}$ = 7.5 Hz; ${}^{4}J_{(H-H)}$ = 1.0 Hz, 1H); ${}^{13}C$ { ${}^{1}H$ }NMR (125 MHz, CD₂Cl₂, 300 K): δ 39.1, 112.2, 121.6, 122.1, 122.5, 123.2, 123.7, 124.0, 124.1, 124.2, 125.0, 127.0, 128.6, 149.7, 156.7, 172.6; Elemental analysis (%) calcd for: C₁₆H₁₂AuClN₂O: C, 39.98; H, 2.52; N, 5.83; Found: C, 39.79; H, 2.58; N, 5.85.

[(*dbfmi***)Au(CI)₃] (B2).** PhICl₂ (0.69 g, 2.496 mmol) was added to an orange solution of **B1** (1.00 g, 2.080 mmol) in dry CH₂Cl₂ (100 mL) at 0 °C. The reaction mixture was stirred for 20 minutes in the absence of light. Afterwards, the mixture was allowed to warm to room temperature and was stirred for 24 hours in the dark. The solvent of the resulting yellow solution was removed *in vacuo*. The orange solid was slowly precipitated (solvent mixture: CH₂Cl₂/Hexane = 1/1) and the title compound was obtained as a yellow solid. Yield = 0.76 g, 1.373 mmol, 66%. ¹H NMR (500 MHz, CD₂Cl₂, 300 K): δ 4.12 (s, 3H, N-CH₃), 7.45-7.48 (m, 2H), 7.54-7.62 (m, 3H), 7.67 (d, ³*J*_{H-H} = 8.0 Hz, 1H), 7.89 (d, ³*J*_{H-H} = 8.0 Hz, 1H), 8.08 (d, ³*J*_{H-H} = 7.5 Hz, 1H), 8.21 (d, ³*J*_{H-H} = 8.0 Hz, 1H); ¹³C {¹H}NMR (125 MHz, CD₂Cl₂, 300 K): δ 38.8, 102.1, 112.6, 121.9, 123.7, 123.9, 124.3, 124.5, 124.9, 125.6, 126.1, 127.7, 129.2, 157.0; Elemental analysis (%) calcd for: C₁₆H₁₁AuCl₂N₂O_□CH₂Cl₂: C, 32.08; H, 2.22; N, 4.40; Found: C, 32.03; H, 2.29; N, 4.31.

cis-[(*dbfmi*)Au(Cl)₂] (2). The reaction was performed in the microwave. **B2** (0.500 g, 0.906 mmol) was suspended in H₂O (10 mL) with 10 wt% PhICl₂ (0.050 g). The reaction mixture was heated to 200 °C under continuous stirring for 10 minutes (2 cycles). The yellow suspension was filtered and washed with H₂O (100 mL), Et₂O (100 mL) and CH₂Cl₂ (100 mL). Afterwards the grey solid was washed additionally with EtOAc (1'000 mL), the solvent was removed under reduced pressure and the title compound was obtained as a white solid. Yield = 0.229 g, 0.444 mmol, 49%. ¹H NMR (500 MHz, DMSO-*d*₆, 300 K): δ 4.33 (s, 3H, N-CH₃), 7.51 (t, ³*J*_{H-H} = 7.5 Hz, 1H), 7.67 (t, ³*J*_{H-H} = 7.5 Hz, 1H), 7.81 (d, ³*J*_{H-H} = 8.0 Hz, 1H), 7.96-7.99 (m, 2H), 8.06 (d, ³*J*_{H-H} = 8.5 Hz, 1H), 8.20 (d, ³*J*_{H-H} = 7.5 Hz, 1H), 8.40 (d, ³*J*_{H-H} = 2 Hz, 1H); ¹³C {¹H}NMR (125 MHz, DMSO-*d*₆, 300 K): δ 3.82, 112.0, 117.8, 118.6, 121.7, 122.5, 124.0, 125.9, 126.1, 126.4, 128.7, 135.1, 141.6, 152.9, 156.2.

cis-[(*dbfmi*)Au(C₆F₅)₂] (2a). Iodopentafluorobenzene (0.071 g, 0.242 mmol) was syringed into Et₂O (50 mL) and cooled to -78 °C. 1.6 M *n*-BuLi in hexanes (0.015 g, 0.244 mmol) was added slowly by syringe to the solution and was stirred for 30 minutes at -78 °C. This mixture was cannulated to another solution containing **2**

(0.050 g, 0.097 mmol) in Et₂O (30 mL) at -78 °C. The reaction mixture was stirred for 10 minutes at -78 °C, before the cooling bath was removed and the mixture was allowed to warm at room temperature. The reaction progress was monitored by means of TLC until completion. After quenching with H₂O (50 mL), the mixture was extracted with CH₂Cl₂ (2 x 100 mL) and washed with brine (50 mL). The organic phase was dried over MgSO₄, filtered and the solvent was removed under reduced pressure. The grey residue was purified by column chromatography on silica gel (eluent: Hexane/EtOAc = 3/1) to afford the title compound as a white solid. Yield = 0.031 g, 0.040 mmol, 41%. ¹H NMR (500 MHz, CD_2Cl_2 , 300 K): δ 3.50 (s, 3H, N-CH₃), 6.88 (d, ${}^{3}J_{H-H}$ = 8 Hz, 1H), 7.15 (d, ${}^{3}J_{H-H}$ = 2 Hz, 1H), 7.42 (dt, ${}^{3}J_{H-H}$ = 7.5 Hz; ${}^{4}J_{(H-H)} = 1$ Hz, 1H), 7.54 (dt, ${}^{3}J_{H-H} = 7$ Hz; ${}^{4}J_{(H-H)} = 1$ Hz, 1H), 7.67 (d, ${}^{3}J_{H-H} = 8$ Hz, 1H), 7.71 (d, ${}^{3}J_{H-H} = 8$ Hz, 1H), 7.99 (dd, ${}^{3}J_{H-H} = 7.5$ Hz; ${}^{4}J_{(H-H)} = 1$ Hz, 1H), 8.41 (d, ${}^{3}J_{H-H} = 1$ 1.5 Hz, 1H); ¹³C {¹H}NMR (125 MHz, CD₂Cl₂, 300 K): δ 38.4, 112.3, 119.8, 120.3, 121.7, 124.1, 124.4, 126.7, 128.6, 129.7, 143.9, 157.0; ¹⁹F NMR (376 MHz, CD₂Cl₂, 300 K): δ -121.85 (m, 2 o-F), -122.59 (m, 2 o-F), -160.02 (t, J = 19.75 Hz, 1 p-F), -160.97 (t, J = 19.75 Hz, 1 p-F), -163.20 (m, 2 m-F), -164.06 (m, 2 m-F); Elemental analysis (%) calcd for: $C_{28}H_{11}AuF_{10}N_2O \square^{3/2}(C_2H_5)_2O$: C, 45.86; H, 3.06; N, 3.15; Found: C, 45.73; H, 3.01; N, 2.91.

cis-[(*dbfmi*)Au(C=CC₆H₅F)₂] (2b). (4-fluorophenylethynyl)trimethylsilane (0.164 g, 0.854 mmol) was syringed in DMF (100 mL) under N₂ atmosphere. CsF (0.236 g, 1.152 mmol) and Cul (0.296 g, 1.152 mmol) were added in this order and the reaction mixture was stirred for 20 minutes at ambient temperature resulting in an orange suspension. 2 (0.100 g, 0.194 mmol) was added and the mixture was stirred for 24 hours at room temperature, resulting in a dark orange suspension. The reaction was quenched with H₂O (100 mL), extracted with CH₂Cl₂ (2 x 100 mL) and washed with brine (100 mL). The organic phase was dried over MgSO₄, filtered and the solvent was removed under reduced pressure. The orange residue was purified by column chromatography on silica gel (eluent: Hexane/EtOAc = 1.5/1) to afford the title compound as a yellowish/white solid. Yield = 0.101 g, 0.148 mmol, 76%. ¹H NMR (500 MHz, CD_2Cl_2 , 300 K): δ 4.41 (s, 3H, N-CH₃), 6.98 (t, ${}^{3}J_{(H-H)}$ = 8.5 Hz, 2H), 7.06 (t, ${}^{3}J_{(H-H)}$ = 8.5 Hz, 2H), 7.13 (d, ${}^{3}J_{(H-H)}$ = 2 Hz, 1H), 7.34 (t, ${}^{3}J_{(H-H)}$ = 7 Hz, 1H), 7.41-7.44 (m, 2H), 7.48 (td, ${}^{3}J_{(H-H)} = 7$ Hz; ${}^{4}J_{(H-H)} = 1$ Hz, 1H), 7.56-7.59 (m, 3H), 7.71 $(d, {}^{3}J_{(H-H)} = 8 Hz, 1H), 7.84 (d, {}^{3}J_{(H-H)} = 7 Hz, 1H), 8.19 (d, {}^{3}J_{(H-H)} = 8 Hz, 1H), 8.21 (d, {}^{3}J_{(H-H)} = 8 Hz, 1H$ ${}^{3}J_{(H-H)}$ = 2 Hz, 1H); ${}^{13}C$ {¹H}NMR (125 MHz, CD₂Cl₂, 300 K): δ 38.9, 97.8, 101.2, 102.0, 108.1, 111.8, 115.4, 115.5, 118.8, 119.5, 121.2, 122.6, 122.7, 123.7, 123.8,

124.2, 125.8, 128.0, 129.8, 131.0, 133.4, 133.6, 138.8, 143.1, 156.4, 161.8, 162.0, 165.8; ¹⁹F NMR (376 MHz, CD₂Cl₂, 300 K): *δ* - 114.4 (s, *p*-1F), - 114.5 (s, *p*-1F); Elemental analysis (%) calcd for: $C_{32}H_{20}AuF_2N_2O$: C, 56.23; H, 2.95; N, 4.10; Found: C, 56.30; H, 2.89; N, 3.98; IR (ATR-FTIR): \tilde{v} (-C=C-) = 2148 cm⁻¹, 2139 cm⁻¹.

cis-[(dbfmi)Au(C₆F₅)(C=CC₆H₅F)] (2c). p-Fluorophenylacetylene (0.030 g, 0.250 mmol, 30 μ L) was dissolved in dry CH₂Cl₂ (50 mL). NEt₃ (0.025 g, 0.250 mmol, 35 μ L), Cul (0.046 g, 0.250 mmol) were added in this order and the reaction mixture was stirred for 1 hour at room temperature. 2d (0.150 g, 0.230 mmol) was added and the reaction progress was monitored by means of TLC until 2d disappeared completely. The reaction was quenched with H_2O (50 mL), extracted with CH_2Cl_2 (2 x 100 mL) and washed with brine (100 mL). The organic phase was dried over MgSO₄, filtered and the solvent was removed under reduced pressure to afford the title compound as a yellow solid. Yield = 0.112 g, 0.153 mmol, 66%. ¹H NMR (500 MHz, CD₂Cl₂, 300 K): δ 3.45 (s, 3H, N-CH₃), 7.00 (t, ³J_(H-H) = 8.5 Hz, 2H), 7.06 (s, 1H), 7.39-7.44 (m, 3H), 7.52 (t, ${}^{3}J_{(H-H)}$ = 7 Hz, 1H), 7.63 (d, ${}^{3}J_{(H-H)}$ = 8 Hz, 1H), 7.85 (d, ${}^{3}J_{(H-H)}$ = 8 Hz, 1H), 8.26-8.27 (m, 2H); ¹³C {¹H}NMR (125 MHz, CD₂Cl₂, 300 K): δ 38.3, 97.6, 103.3, 112.2, 115.6, 115.8, 119.6, 120.1, 121.7, 122.7, 124.1, 124.3, 124.4, 126.4, 128.3, 129.6, 131.2, 133.8, 133.9, 143.5, 156.9, 161.4, 163.3, 167.6; ¹⁹F NMR (376 MHz, CD_2CI_2 , 300 K): δ -115.51 (s, 1 *p*-F), -121.81-(-121.93) (m, 2 *o*-F), -160.52 (t, J = 25.19 Hz, 1 p-F), -163.35-(-163.54) (m, 2 m-F); Elemental analysis (%) calcd for: C₃₀H₁₅AuF₆N₂O: C, 49.33; H, 2.07; N, 3.84; Found: C, 49.52; H, 2.14; N, 3.71; IR (ATR-FTIR): $\tilde{v}(-C=C-) = 2040 \text{ cm}^{-1}$.

cis-[(*dbfmi*)Au(C₆F₅)(CI)] (2d). AgC₆F₅ (0.018 g, 0.065 mmol) was dissolved in dry CH₂Cl₂ (20 mL) under exclusion of light and cannulated to a suspension of **2** (0.030 g, 0.058 mmol) in dry CH₂Cl₂ (20 mL). The mixture was stirred at ambient temperature, in the dark for 24 hours. The reaction was quenched with H₂O (50 mL), extracted with CH₂Cl₂ (2 x 50 mL) and washed with brine (50 mL). The organic phase was dried over MgSO₄, filtered and the solvent was removed *in vacuo*. The orange residue was purified by column chromatography on silica gel (eluent: CH₂Cl₂) to afford the title compound as a white solid. Yield = 0.014 g, 0.022 mmol, 75%. ¹H NMR (500 MHz, CD₂Cl₂, 300 K): δ 3.48 (s, 3H, N-CH₃), 7.18 (d, ³J_(H-H) = 2 Hz, 1H), 7.44 (dt, ³J_(H-H) = 8 Hz; ⁴J_(H-H) = 1 Hz, 1H), 7.55 (dt, ³J_(H-H) = 7 Hz; ⁴J_(H-H) = 1 Hz, 1H), 7.67 (d, ³J_(H-H) = 8 Hz, 1H), 8.36 (d, ³J_(H-H) = 2 Hz, 1H); ¹³C {¹H}NMR (125 MHz,

CD₂Cl₂, 300 K): δ 38.3, 111.8, 119.0, 119.5, 121.2, 123.5, 123.7, 124.3, 126.4, 126.9, 127.6, 128.1, 142.8, 153.6, 156.6; ¹⁹F NMR (376 MHz, CD₂Cl₂, 300 K): δ - 123.17-(-123.26) (m, 2 *o*-F), -159.60 (t, *J* = 18.90 Hz, 1 *p*-F), -162.67-(-162.83) (m, 2 *m*-F); Elemental analysis (%) calcd for: C₂₂H₁₁AuClF₅N₂O: C, 40.86; H, 1.71; N, 4.33; Found: C, 40.26; H, 1.61; N, 4.27.

Scheme S3. Synthetic pathways for the gold complexes of the *flzmi*-series.

9,9-dimethylfluorene-2yl-1-methyl-3H-imidazole-1-ium-iodide (C). To a solution of 2-bromo-9,9-dimethylfluorene (5.000 g, 18.304 mmol) in DMF (50 mL) in a Young-Schlenk, imidazole (1.520 g, 22.300 mmol), Cul (0.65 g, 3.391 mmol) and K₂CO₃ (3.400 g, 24.061 mmol) were added in this order. The reaction mixture was stirred at 150 °C for 48 hours. Afterwards, the solution was allowed to cool to room temperature and the brownish suspension was filtered and washed with additional DMF (50 mL). The solvent was removed *in vacuo* resulting in a brownish viscose residue. The residue was dissolved in CH₂Cl₂ (50 mL), washed with a 25% NH₃ solution (20 mL) and with H₂O (20 mL). The organic phase was dried over MgSO₄, filtered and the solvent was removed under reduced pressure yielding in a brown, viscose solid. The residue was used without further purification for the next step. The residue isolated from the previous reaction was dissolved in THF (50 mL). MeI (7.71 g, 54.361 mmol) was slowly syringed to the brown solution and the reaction mixture

was stirred at ambient temperature for 65 hours. The yellow suspension was filtered and the precipitate was washed with THF (150 mL) to obtain the title compound as a yellow solid. Yield: 4.02 g, 9.994 mmol, 54%. ¹H NMR (500 MHz, CD₂Cl₂, 300 K): δ 1.58 (s, 6H, C(CH₃)₂), 4.25 (s, 3H, N-CH₃), 7.39-7.41 (m, 2H), 7.45 (s, 1H), 7.49-7.51 (m, 1H), 7.64 (s, 1H), 7.67 (d, ${}^{3}J_{(H-H)}$ = 8 Hz, 1H), 7.79-7.80 (m, 1H), 7.92 (d, ${}^{3}J_{(H-H)}$ = 8.5 Hz, 1H), 8.03 (s, 1H), 10.73 (s, 1H); ¹³C {¹H}NMR (125 MHz, CD₂Cl₂, 300 K): δ 27.1, 37.6, 48.0, 117.6, 121.1, 121.1, 121.2, 121.8, 123.3, 124.3, 127.8, 128.9, 133.8, 136.9, 137.6, 141.8, 154.6, 156.7; Elemental analysis (%) calcd for: C₁₉H₁₉IN₂: C, 56.73; H, 4.76; N, 6.96; Found: C, 57.02; H, 4.91; N, 6.72.

[(flzmi)Au(Cl)] (C1). [(SMe₂)Au(Cl)] (0.444 g, 2.610 mmol) was added to a solution of C (1.00 g, 2.490 mmol) in MeCN (200 mL). The reaction mixture was stirred for 20 minutes at room temperature. NaOAc (3.059 g, 37.288 mmol) was added and the solution was stirred at ambient temperature for 24 hours, resulting in a pink suspension. The reaction was quenched with H₂O (100 mL), extracted with CH₂Cl₂ (2 x 100 mL) and washed with brine (150 mL). The organic phase was dried over MgSO₄, filtered and the solvent was removed under reduced pressure. The brown residue was purified by column chromatography on silica gel (eluent: EtOAc/Hexane = 1/1) to afford the title compound as an orange/white solid. Yield = 0.636 g, 1.255mmol, 50%. ¹H NMR (500 MHz, CD₂Cl₂, 300 K): δ 1.54 (s, 6H, C(CH₃)₂), 3.96 (s, 3H, N-CH₃), 7.15 (d, ${}^{3}J_{(H-H)} = 2$ Hz, 1H), 7.33 (d, ${}^{3}J_{(H-H)} = 2$ Hz, 1H), 7.39-7.37 (m, 2H), 7.48-7.50 (m, 1H), 7.58 (dd, ${}^{3}J_{(H-H)} = 8$ Hz; ${}^{4}J_{(H-H)} = 2$ Hz, 1H), 7.77-7.79 (m, 1H), 7.83-7.86 (m, 2H); ¹³C {¹H}NMR (125 MHz, CD₂Cl₂, 300 K): δ 27.3, 38.7, 47.8, 119.9, 120.9, 121.1, 121.9, 122.6, 123.2, 123.8, 127.7, 128.5, 138.3, 138.5, 140.6, 154.6, 155.6, 181.7; Elemental analysis (%) calcd for: C₁₉H₁₈AuClN₂¹/₄ C₆H₁₄: C, 46.60; H, 4.10; N, 5.30; Found: C, 46.81; H, 4.16; N, 4.96.

[(*flzmi*)Au(Cl)₃] (C2). PhICl₂ (0.414 g, 1.506 mmol) was added to a solution of C1 (0.636 g, 1.255 mmol) in CH₂Cl₂ (150 mL) at 0 °C. The mixture was stirred for 20 minutes in the dark. Afterwards, the ice-bath was removed and the mixture was stirred at room temperature for 24 hours, resulting in a red solution. The solvent was removed under reduced pressure and the brownish residue was washed with hexane (2 x 100 mL) to afford the title compound as a bright orange solid. Yield = 0.550 g, 0.952 mmol, 75%. ¹H NMR (500 MHz, CD₂Cl₂, 300 K): δ 1.55 (s, 6H, C(CH₃)₂), 4.07 (s, 3H, N-CH₃), 7.35 (s, 1H), 7.42-7.40 (m, 2H), 7.47 (s, 1H), 7.51 (t, ³J_(H-H) = 5 Hz, 1H), 7.55 (d, ³J_(H-H) = 8 Hz, 1H), 7.74 (s, 1H), 7.82 (t, ³J_(H-H) = 5 Hz, 1H), 7.92 (d, ³J_(H-H) = 8 Hz, 1H); ¹³C {¹H}NMR (125 MHz, CD₂Cl₂, 300 K): δ 27.2, 38.6, 47.9, 121.3,

121.4, 121.8, 123.5, 125.1, 125.3, 125.5, 128.0, 129.1, 136.0, 138.0, 142.2, 154.7, 156.3; Elemental analysis (%) calcd for: $C_{19}H_{18}AuCl_3N_2 \square CH_2Cl_2$: C, 36.25; H, 3.04; N, 4.23; Found: C, 36.01; H, 2.78; N, 4.02.

cis-[(*flzmi*)Au(Cl)₂] (3). The reaction was performed in the microwave. C2 (0.200 g, 0.346 mmol) was suspended in H₂O (15 mL), heated to 200 °C and stirred for 15 minutes (2 cycles). The brownish/orange suspension was filtered and the solid washed with H₂O (100 mL) and Et₂O (200 mL) to obtain the title compound as a light brown solid. Yield = 0.118 g, 0.218 mmol, 63%. ¹H NMR (500 MHz, DMSO-*d*6, 300 K): δ 1.49 (s, 6H, C(CH₃)₂), 4.25 (s, 3H, N-CH₃), 7.37-7.35 (m, 2H), 7.58 (d, ³*J*_(H-H) = 6 Hz, 1H), 7.75 (d, ³*J*_(H-H) = 6 Hz, 1H), 7.82 (d, ³*J*_(H-H) = 2 Hz, 1H), 7.99 (s, 1H), 8.39-8.37 (m, 2H); ¹³C {¹H}NMR (125 MHz, DMSO-*d*6, 300 K): δ 27.7, 39.3, 47.7, 111.0, 117.6, 121.0, 123.2, 124.0, 127.1, 128.5, 128.8, 137.1, 138.7, 141.7, 153.2, 154.5, 155.5.

cis-[(*flzmi*)Au(C=CC₆H₅F)₂] (3b). (4-fluorophenylethynyl)trimethylsilane (0.047 g, 0.244 mmol) was dissolved in DMF (50 mL). CsF (0.067 g, 0.443 mmol) and Cul (0.084 g, 0.443 mmol) were added in this order and the reaction mixture was stirred for 20 minutes at room temperature resulting in an orange suspension. 3 (0.030 g, 0.055 mmol) was added and the reaction was stirred for 24 hours at room temperature, resulting in a deep red suspension. The reaction was quenched with H_2O (100 mL), extracted with CH_2Cl_2 (2 x 100 mL) and washed with brine (100 mL). The organic phase was dried over MgSO₄, filtered and the solvent was removed under reduced pressure. The brownish residue was purified by column chromatography on silica gel (eluent: Hexane/EtOAc = 1/1) to afford the title compound as an orange/white solid. Yield = 0.016 g, 0.022 mmol, 41%. ¹H NMR (500 MHz, CD₂Cl₂, 300 K): δ 1.51 (s, 6H, C(CH₃)₂), 4.35 (s, 3H, N-CH₃), 7.00 (t, ³J_{(H-} _{H)} = 9 Hz, 2H), 7.08- 7.12 (m, 3H), 7.32-7.34 (m, 3H), 7.44-7.49 (m, 3H), 7.59 (d, ${}^{3}J_{(H-1)}$ _{H)} = 2 Hz, 1H), 7.64-7.69 (m, 3H), 8.69 (s, 1H); ¹³C {¹H}NMR (125 MHz, CD₂Cl₂, 300 K): δ 27.1 (Me), 38.9 (N-CH₃), 47.3, 97.2, 100.9, 102.9, 107.7, 109.0, 115.5, 115.6, 116.2, 120.2, 122.6, 122.7, 122.8, 124.0, 127.5, 129.0, 133.5, 133.8, 138.0, 138.5, 139.1, 144.9, 153.8, 153.9, 162.0, 162.2, 165.7; ¹⁹F NMR (376 MHz, CD₂Cl₂, 300 K): δ -113.88 (s, p-1F), -114.03 (s, p-1F); Elemental analysis (%) calcd for: C₃₅H₂₅AuF₂N₂: C, 59.33; H, 3.56; N, 3.95; Found: C, 59.67; H, 3.63; N, 3.72; IR (ATR-FTIR): $\tilde{v}(-C=C-) = 2149 \text{ cm}^{-1}$, 2129 cm⁻¹.

Single Crystal X-ray Diffraction Studies

Crystal structure determinations – Selected single crystals of compounds 1, 1a, 1b, 2a, 2c, C, A1, A2, B1, B2 and C were studied by X-ray diffraction at 183(1) K on Rigaku Oxford Diffraction¹ SuperNova / Atlas (1, 1a, 1b, 2a, 2c, A1, B1 and C2) and Xcalibur / Ruby area-detector diffractometers (A2, B2 and C) using a single wavelength Enhance X-ray source with a MoK_a radiation for 1, 2a, C, A1, A2, B1, B2 and **C** or a CuK_{α} radiation for **1a**, **1b** and **2c** from a micro-focus X-ray source and an Oxford Instruments Cryojet XL cooler. The selected single crystals were mounted using polybutene oil on a flexible loop fixed on a goniometer head and immediately transferred to the diffractometer. Pre-experiment, data collection, data reduction and analytical absorption correction² were carried out with the program CrysAlisPro³. Using Olex2 ENREF 63,4 the crystal structures were solved with ShelXS97,5 SHELXT⁶ or Superflip⁷ and refined with SHELXL-2014/7⁸ (except **1** refined with SHELXL-2013/4) by full-matrix least-squares minimization on F². The results of the X-ray analyses were checked using PLATON.⁹ For more details about the data collection and final parameters, see Tables S1 – S4 and the CIF files. Refinement details - 1: All non-hydrogen atoms were anisotropically refined. All hydrogen positions were calculated after each cycle of refinement using a riding model with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic H atoms, and with C—H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms. **1a**: Solvent molecules of dichloromethane co-crystallized with the main Au(III) molecules in a ratio 1:1. All hydrogen positions were calculated after each cycle of refinement using a riding model with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic H atoms, with C—H = 0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for methylene H atoms, and with C—H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms. **1b**: Solvent molecules of hexane cocrystallized with the main Au(III) molecules in a ratio 1:2. The Au(III) molecules lie on mirror planes while the solvent molecules lie on center of inversion. The alkyne ligand trans to the carbene moiety and the hexane molecule are disordered over two sets of positions with a fixed site-occupancy factor of 0.5 due to their positions near symmetry elements. Some SHELXL restraints/constraints (DFIX, SADI and SIMU) were used to correct the geometry of some disordered moieties and the anisotropic thermal parameters of the corresponding atoms (see the shelx res file section in the CIF for details). All hydrogen positions were calculated after each cycle of refinement using a riding model with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{ea}(C)$ for aromatic H atoms, with C—H = 0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for methylene H

atoms, and with C—H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms. **2a**: Solvent molecules of pentane co-crystallized with the main Au(III) molecules in a ratio 1:4. The pentafluorophenyl ligand trans to the carbene moiety is disordered over two sets of positions with site-occupancy factors of 0.775(16) and 0.225(16). The pentane molecule is also disordered and the site-occupancy factor was fixed at 0.25 to get reasonable thermal parameters. Many SHELXL restraints/constraints (DFIX, SADI, FLAT, SIMU and EADP) were used to correct the geometry of the disordered parts and the anisotropic thermal parameters of the corresponding atoms (see the _shelx_res_file section in the CIF for details). All hydrogen positions were calculated after each cycle of refinement using a riding model with C—H = 0.93 Å and $U_{iso}(H)$ = $1.2U_{eq}(C)$ for aromatic H atoms, with C—H = 0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for methylene H atoms, and with C—H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms. 2c: There are two crystallographically independent Au(III) molecules in the asymmetric unit of 2c and solvent molecules of dichloromethane co-crystallized with the main Au(III) molecules in a ratio 1:4. The *dbfmi* ligand in one molecule is partially disordered over two sets of positions with site-occupancy factors of 0.52(2) and 0.48(2). The dichloromethane molecule is also disordered and the site-occupancy factor was fixed at 0.25 to get reasonable thermal parameters. Many SHELXL restraints/constraints (DFIX, DANG, SADI, RIGU and EADP) were used to correct the geometry of the disordered parts and the anisotropic thermal parameters of the corresponding atoms (see the _shelx_res_file section in the CIF for details). All hydrogen positions were calculated after each cycle of refinement using a riding model with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic H atoms, with C—H = 0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for methylene H atoms, and with C—H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms. C: All non-hydrogen atoms were anisotropically refined. All hydrogen positions were calculated after each cycle of refinement using a riding model with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic H atoms, and with C—H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms. A1: There are two crystallographically independent Au(I) molecules in the asymmetric unit of A1. All non-hydrogen atoms were anisotropically refined. All hydrogen positions were calculated after each cycle of refinement using a riding model with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic H atoms, and with C—H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms. A2: All non-hydrogen atoms were anisotropically refined. All hydrogen positions were calculated after each cycle of refinement using a riding model with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic H atoms, and with C—H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms. B1: All non-hydrogen atoms were anisotropically refined. All hydrogen

positions were calculated after each cycle of refinement using a riding model with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic H atoms, and with C—H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms. **B2**: All non-hydrogen atoms were anisotropically refined. All hydrogen positions were calculated after each cycle of refinement using a riding model with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic H atoms, and with C—H = 0.96 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic H atoms, and with C—H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms. **C2**: All non-hydrogen atoms were anisotropically refined. All hydrogen positions were calculated after each cycle of refinement using a riding model with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic H atoms, and with C—H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms. **C2**: All non-hydrogen atoms were anisotropically refined. All hydrogen positions were calculated after each cycle of refinement using a riding model with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic H atoms, and with C—H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms. CCDC 1497778 (1), 1497779 (1a), 1497780 (1b), 1497781 (A2), 1497782 (A1), 1497783 (2a), 1497784 (2c), 1497785 (C), 1497786 (B1), 1497787 (B2) and 1497788 (C2) contain the supplementary crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre. Copies of data can be obtained free of charge at http://www.ccdc.cam.ac.uk/products/csd/request/.

	1	1a	1b
CCDC number	1497778	1497779	1497780
Empirical formula	$C_{10}H_9AuCl_2N_2$	C22H9AuF10N2, CH2Cl2	C ₂₆ H ₁₇ AuF ₂ N ₂ , 0.5(C ₆ H ₁₄)
Formula weight	425.06	773.20	635.47
Temperature/K	183(1)	183(1)	183(1)
Crystal system	orthorhombic	monoclinic	monoclinic
Space group	Pbca	P2 ₁ /n	$P2_1/m$
a/Å	15.0499(2)	7.46130(10)	12.6163(2)
b/Å	7.55959(10)	14.2119(2)	6.87230(10)
c/Å	19.0308(3)	22.5071(4)	15.3236(3)
α/°	90	90	90
β/°	90	90.509(2)	111.884(2)
γ/°	90	90	90
Volume/Å ³	2165.16(5)	2386.56(7)	1232.86(4)
Z	8	4	2
$\rho_{calc}mg/mm^3$	2.608	2.152	1.712
m/mm ⁻¹	14.046	14.545	11.496
F(000)	1568.0	1464.0	618.0
Crystal size/mm ³	$0.18\times0.16\times0.02$	$0.21\times0.13\times0.01$	$0.19 \times 0.03 \times 0.02$
Radiation	Mo K α ($\lambda = 0.71073$ Å)	Cu K α (λ = 1.54184 Å)	$CuK\alpha \ (\lambda = 1.54184)$
2Θ range for data collection	4.28 to 54.97°	7.36 to 148.95°	6.22 to 153.47°
Index ranges	$\begin{array}{l} -19 \leq h \leq 19, \ -9 \leq k \leq 9, \\ -24 \leq l \leq 24 \end{array}$	$-9 \le h \le 8, -17 \le k \le 14,$ $-28 \le 1 \le 28$	$\begin{array}{l} -15 \leq h \leq 15, \ -8 \leq k \leq 8, \\ -18 \leq l \leq 19 \end{array}$
Reflections collected	18519	19315	21225
Independent reflections	$2476[R_{int} = 0.0337]$	$4862[R_{int} = 0.0348]$	2807 [$R_{int} = 0.0360, R_{sigma} = 0.0153$]
Data/restraints/parameters	2476/0/137	4862/0/344	2807/111/225
Goodness-of-fit on F ²	1.091	1.128	1.080
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0219$, $wR_2 = 0.0540$	$R_1 = 0.0322, wR_2 = 0.0846$	$R_1 = 0.0243, wR_2 = 0.0641$
Final R indexes [all data]	$R_1 = 0.0279, wR_2 = 0.0578$	$R_1 = 0.0330, wR_2 = 0.0853$	$R_1 = 0.0251, wR_2 = 0.0647$
Largest diff. peak/hole / e Å-3	1.77/-0.74	1.56/-0.91	1.85/-0.72

Table S1. Crystallographic data and refinement parameters for 1, 1a and 1b.

	2a	2c	С
CCDC number	1497783	1497784	1497785
Empirical formula	$4(C_{28}H_{11}AuF_{10}N_2O), C_5H_{12}$	4(C ₃₀ H ₁₅ AuF ₆ N ₂ O), CH ₂ Cl ₂	C ₁₉ H ₁₉ N ₂ , I
Formula weight	6371.12	3006.55	402.26
Temperature/K	183(1)	183(1)	183(1)
Crystal system	monoclinic	monoclinic	orthorhombic
Space group	C2/c	$P2_1/n$	Pbca
a/Å	31.2423(17)	14.9429(4)	10.1622(2)
b/Å	13.2690(7)	13.3830(4)	14.9458(4)
c/Å	14.5873(7)	27.7426(13)	22.7760(6)
α/°	90	90	90
β/°	102.587(5)	93.587(3)	90
γ/°	90	90	90
Volume/Å ³	5901.9(5)	5537.1(3)	3459.27(15)
Z	1	2	8
$\rho_{calc}mg/mm^3$	1.793	1.803	1.545
m/mm ⁻¹	5.074	11.036	1.850
F(000)	3044.0	2884.0	1600.0
Crystal size/mm ³	$0.2\times0.15\times0.05$	$0.27\times0.07\times0.02$	$0.37 \times 0.28 \times 0.14$
Radiation	Mo K α (λ = 0.71073 Å)	Cu Ka (λ = 1.54184 Å)	Mo K α (λ = 0.71073 Å)
2Θ range for data collection	4.21 to 52.74°	6.4 to 136.5°	5.166 to 55.11°
Index ranges	$\begin{array}{l} -38 \leq h \leq 38, \text{-16} \leq k \leq 16, \\ -18 \leq l \leq 18 \end{array}$	$\begin{array}{l} -18 \leq h \leq 17, -16 \leq k \leq 16, \\ -33 \leq l \leq 33 \end{array}$	$\begin{array}{l} -13 \leq h \leq 13, -19 \leq k \leq 19, \\ -29 \leq l \leq 29 \end{array}$
Reflections collected	16439	39541	33124
Independent reflections	$16439 [R_{sigma} = 0.0456]$	$10053 [R_{int} = 0.0583, R_{sigma} = 0.0434]$	3999 [$R_{int} = 0.0388$, $R_{sigma} = 0.0184$]
Data/restraints/parameters	16439/532/475	10053/114/715	3999/0/202
Goodness-of-fit on F ²	1.049	1.047	1.051
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0454, wR_2 = 0.1252$	$R_1 = 0.0732, wR_2 = 0.2042$	$R_1 = 0.0292, wR_2 = 0.0784$
Final R indexes [all data]	$R_1 = 0.0800, wR_2 = 0.1379$	$R_1 = 0.0837$, $wR_2 = 0.2139$	$R_1 = 0.0347, wR_2 = 0.0818$
Largest diff. peak/hole / e Å ⁻³	1.82/-0.64	3.36/-2.58	1.31/-0.64

Table S2. Crystallographic data and refinement parameters for 2a, 2c and C.

	A1	A2	B1
CCDC number	1497782	1497781	1497786
Empirical formula	$C_{10}H_{10}AuClN_2$	$C_{10}H_{10}AuCl_3N_2$	C ₁₆ H ₁₂ AuClN ₂ O
Formula weight	390.62	461.52	480.69
Temperature/K	183(1)	183(1)	183(1)
Crystal system	triclinic	monoclinic	triclinic
Space group	P-1	$P2_1/n$	P-1
a/Å	8.9263(2)	7.9815(2)	7.42395(15)
b/Å	9.1203(2)	19.0268(4)	9.71840(19)
c/Å	13.5093(2)	9.0159(2)	11.1571(2)
α/°	89.5116(17)	90	75.0300(16)
β/°	84.5109(16)	109.315(3)	73.7053(17)
γ/°	77.147(2)	90	69.5966(18)
Volume/Å ³	1067.24(4)	1292.11(6)	712.55(3)
Z	4	4	2
$\rho_{calc}mg/mm^3$	2.431	2.372	2.240
m/mm ⁻¹	13.994	11.979	10.509
F(000)	720.0	856.0	452.0
Crystal size/mm ³	$0.25 \times 0.22 \times 0.04$	$0.22\times0.19\times0.06$	$0.28\times0.13\times0.03$
Radiation	Mo K α ($\lambda = 0.71073$ Å)	Mo K α (λ = 0.71073 Å)	Mo K α ($\lambda = 0.71073$ Å)
2Θ range for data collection	4.58 to 56.56°	5.24 to 61.02°	4.54 to 61.01°
Index ranges	$\begin{array}{l} \text{-11} \leq h \leq \text{11}, \text{-12} \leq k \leq \text{12}, \\ \text{-18} \leq \text{1} \leq \text{18} \end{array}$	$\begin{array}{l} -11 \leq h \leq 11, -27 \leq k \leq 27, \\ -12 \leq l \leq 12 \end{array}$	$\begin{array}{l} -10 \leq h \leq 10, -13 \leq k \leq 13, \\ -15 \leq l \leq 15 \end{array}$
Reflections collected	21789	27810	17387
Independent reflections	$5281[R_{int} = 0.0327]$	$3947 [R_{int} = 0.0446, R_{sigma} = 0.0214]$	4346 [$R_{int} = 0.0235$, $R_{sigma} = 0.0196$]
Data/restraints/parameters	5281/0/255	3947/0/146	4346/0/191
Goodness-of-fit on F2	1.025	1.139	1.070
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0255, wR_2 = 0.0649$	$R_1 = 0.0208, wR_2 = 0.0483$	$R_1 = 0.0166, wR_2 = 0.0401$
Final R indexes [all data]	$R_1 = 0.0294, wR_2 = 0.0674$	$R_1 = 0.0225, wR_2 = 0.0490$	$R_1 = 0.0183$, $wR_2 = 0.0409$
Largest diff. peak/hole / e Å-3	1.41/-1.74	0.76/-1.26	0.9/-0.65

Table S3. Crystallographic data and refinement parameters for A1, A2 and B1.

	B2	C2
CCDC number	1497787	1497788
Empirical formula	C ₁₆ H ₁₂ AuCl ₃ N ₂ O	$C_{19}H_{18}AuCl_3N_2$
Formula weight	551.59	577.67
Temperature/K	183(1)	183(1)
Crystal system	monoclinic	orthorhombic
Space group	$P2_1/n$	Pca2 ₁
a/Å	12.4966(4)	17.61694(20)
b/Å	10.2798(3)	7.56666(9)
c/Å	13.1496(3)	14.8780(2)
α/°	90	90
β/°	90.296(3)	90
$\gamma/^{\circ}$	90	90
Volume/Å ³	1689.20(8)	1983.26(4)
Z	4	4
$\rho_{calc}mg/mm^3$	2.169	1.935
m/mm ⁻¹	9.187	7.826
F(000)	1040.0	1104.0
Crystal size/mm ³	$0.33 \times 0.13 \times 0.11$	$0.24 \times 0.12 \times 0.02$
Radiation	MoKa ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)
2Θ range for data collection	5.03 to 61.01°	4.6 to 52.7°
Index ranges	$\begin{array}{l} \textbf{-16} \leq h \leq 17, \textbf{-14} \leq k \leq 14, \\ \textbf{-18} \leq \textbf{1} \leq 18 \end{array}$	$\text{-}22 \leq h \leq 22, \text{-}9 \leq k \leq 9, \text{-}18 \leq l \leq 18$
Reflections collected	25348	18197
Independent reflections	5144 [$R_{int} = 0.0413$, $R_{sigma} = 0.0301$]	$]4044 [R_{int} = 0.0244, R_{sigma} = 0.0192]$
Data/restraints/parameters	5144/0/209	4044/1/229
Goodness-of-fit on F ²	1.070	1.036
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0239, wR_2 = 0.0555$	$R_1 = 0.0149$, $wR_2 = 0.0325$
Final R indexes [all data]	$R_1 = 0.0302, wR_2 = 0.0585$	$R_1 = 0.0167, wR_2 = 0.0333$
Largest diff. peak/hole / e Å-	³ 1.18/-1.02	0.42/-0.28
Flack parameter	-	-0.019(3)

Table S4. Crystallographic data and refinement parameters for B2 and C2.

	Au–	Au–	Au-	C _{C6F5}	Au–C	C8H4F5	N-C _{central}	C _{(C^C)carb} -Au-
	C(C^C)carb	C(C^C)phen	<i>trans</i> (C^C)carb.	<i>trans</i> (C^C)phen.	<i>trans</i> (C^C)carb.	<i>trans</i> (C^C)phen.		C(C^C)phen
1	2.010(5)	2.038(4)	-	-	-	-	1.414(5)	80.08(16)
1a	2.047(4)	2.068(5)	2.065(5)	2.089(4)	-	-	1.428(6)	79.43(17)
1b	2.039(4)	2.037(4)	-	-	2.048(5)	2.073(4)	1.414(6)	79.6(2)
2a	2.051(9)	2.057(8)	2.056(10)	2.117(6) ¹ 2.117(9)	-	-	1.426(11)	79.5(4)
2c	2.025(11)	2.075(12)	-	2.090(12)	1.987(10)	-	1.425(10)	81.2(5)
	² 2.056(11)	2.061(11)		2.067(10)	1.994(14)		1.410(16)	80.0(5)
A1	1.980(5) ² 1.982(5)	-	-	-	-	-	1.446(6) 1.447(6)	-
A2	2.001(3)	-	-	-	-	-	1.442(4)	-
B1	1.980(2)	-	-	-	-	-	1.422(3)	-
B2	1.994(3)	-	-	-	-	-	1.434(4)	-
C2	1.993(4)	-	-	-	-	-	1.439(6)	-
С	-	-	-	-	-	-	1.446(3)	-

Table S5. Selected bond distances (Å) and bond angles (°) for 1- 1b, 2a, 2c, C, A1, A2, B1, B2 and C.

¹ two values are given due to the disorder, ² two values are given due to the two independent molecules in the asymmetric unit.

Figure S1. X-ray crystal structure of 1 with thermal ellipsoids shown at 30% probability.

Figure S2. X-ray crystal structure of 1a with thermal ellipsoids shown at 30% probability (the dichloromethane solvent molecule has been omitted for clarity).

Figure S3. X-ray crystal structure of **1b** with thermal ellipsoids shown at 30% probability (the hexane solvent molecule and the minor component of the disordered alkyne ligand have been omitted for clarity).

Figure S4. X-ray crystal structure of **2a** with thermal ellipsoids shown at 30% probability (the pentane solvent molecule and the minor component of the disordered pentafluorophenyl have been omitted for clarity).

Figure S5. X-ray crystal structure of **2c** with thermal ellipsoids shown at 30% probability (the dichloromethane solvent molecule and the second crystallographically independent Au(III) molecule have been omitted for clarity).

Figure S6. X-ray crystal structure of C with thermal ellipsoids shown at 30% probability.

Figure S7. X-ray crystal structure of A1 with thermal ellipsoids shown at 30% probability (the second crystallographically independent Au(I) molecule has been omitted for clarity).

Figure S8. X-ray crystal structure of A2 with thermal ellipsoids shown at 30% probability.

Figure S9. X-ray crystal structure of B1 with thermal ellipsoids shown at 30% probability.

Figure S10. X-ray crystal structure of B2 with thermal ellipsoids shown at 30% probability.

Figure S11. X-ray crystal structure of C2 with thermal ellipsoids shown at 30% probability.

Photophysical Studies

Figure S12. Normalized emission spectra of 1c in a PMMA matrix (5 wt%). Inset: Enlarged emission spectrum of the phosphorescence emission.

Table S6. Summary of photophysical studies of all lumin	escent complexes.
---	-------------------

Complex	Absorption ^(a) λ _{max} [nm] (ε _{max} [M ⁻¹ cm ⁻¹])	Emission r.t. solution ^(a) / 77 K ^(b) λ_{max} [nm]	τ [µs]	r.t. Φ _P ^(c) [%]	k _r [s ⁻¹] x10 ⁻³	k _{nr} [s ⁻¹] x10 ⁻⁵	Emission 5wt% PMMA λ _{max} [nm]	$\Phi_{\text{em}^{(c)}}[\%]$
	293 (1720)	409, 433, 460 (77 K)	0.62 (77 K)	-	-	-	414, 433, 450	1.41
1b	295 (17200)	416, 435, 450 (r.t.) 410, 432, 450 (77 K)	0.49 (r.t.) 0.59 (77 K)	<1	-	-	415, 435, 452	5.40
1c	293 (9750)	408, 429, 449 (77 K)	0.52 (77 K)	-	-	-	381, 395, 407 459, 468, 481	1.23 ^(d)
1d	306 (1570)	332, 345, 357 (r.t.)	0.07 (r.t.)	<1	-	-		
2a	311 (12040) 283 (15170) 275 (10930)	450, 481, 514 (r.t.)	4.16 (r.t.)	1.63	3.9	2.4	451, 483, 516	8.13
2b	313 (25370) 284 (24833) 278 (20409)	450, 482, 513 (r.t.)	0.65 (r.t.)	10.42	162.8	13.8	451, 481, 514	12.43
2c	312 (20070) 284 (23303) 276 (18460)	451, 484, 518 (r.t.)	2.94 (r.t.)	1.89	6.4	3.3	451, 483, 516	2.51
2d	312 (11290)	450, 479 (r.t.)	0.74 (r.t.)	<1	-	-		
3b	321 (4804) 296 (8678) 270 (12808)	477, 509, 545 (r.t.)	0.57 (r.t.)	3.93	68.9	16.9	477, 508, 546	16.49

a) Measured in THF. b) Measured in 2-Me-THF. c) Phosphorescence quantum yield doped in PMMA (5wt%). (d) Luminescence quantum yield doped in PMMA (5wt%).

Thermogravimetric analysis

Figure S13. TG analysis and DSC measurement of compound 2b.

Computational studies

Computational details. The luminescent properties of compounds 1a, 1b, 1c and 2a were studied by density functional theory (DFT) calculations using the Gaussian 09 program package.¹⁰ The hybrid functional PBE1PBE¹¹ was associated with the Stuttgart/Dresden effective core potentials (SDD) basis set¹² for the Au center augmented with one *f*-polarization function ($\alpha = 1.050$) and the standard 6-31+G(d) basis set¹³ for the remaining atoms in all calculations. The optimized geometries of the ground states S_0 and lowest triplet states T_1 of the selected compounds were obtained by DFT calculations without symmetry restriction in the gas phase (restricted method for the ground states, unrestricted calculations for the the triplet states). The final geometries were confirmed to be potential energy minima by vibrational frequency calculations at the same level of theory, as no imaginary frequency was found. On the DFT optimized ground-state S₀ geometries, timedependent DFT (TD-DFT) calculations¹⁴ associated with the conductive polarizable continuum model (CPCM)¹⁵ were used to produce the first twenty lowest singletsinglet S_0-S_n and the first two singlet-triplet S_0-T_1 vertical excitations in tetrahydrofuran with the corresponding energies, transition coefficients, and oscillator strengths. The molecular orbital and spin density plots reported in the manuscript were generated by Gaussview¹⁶ on Gaussian output files obtained from the TD-DFT calculations including the solvent effects (CPCM / tetrahydrofuran).

Table S7. Selected singlet (S₁, and S_n with oscillator strength f > 0.05) and triplet T_m excited states (m = 1-3) calculated with TD-DFT/CPCM (in tetrahydrofuran): vertical excitation energies (nm), transition coefficients (c > 0.2), orbitals involved in the transitions, and oscillator strengths f for compounds **1a**, **1b**, **1c** and **2a**.

	1a	1b	1c	2a
S ₀ –S _n ^a	n = 1 281.7 (f = 0.017) H \rightarrow L (c = 0.69) n = 8 245.8 (0.062) H-1 \rightarrow L+1 (0.62) n = 12	n = 1 320.0 (f = 0.000) H \rightarrow L (c = 0.70) n = 4 263.5 (0.090) H-3 \rightarrow L (0.58) H \rightarrow L+1 (0.23) n = 5	n = 1 309.3 (f = 0.000) H \rightarrow L (c = 0.69) n = 3 268.0 (0.115) H \rightarrow L+1 (0.68) n = 4	n = 1 312.3 (f = 0.137) H \rightarrow L (c = 0.69) n = 2 296.4 (0.328) H-1 \rightarrow L (0.67) n = 6
	230.6 (0.234) H-6→L (0.67)	262.3 (0.532) H→L+1 (0.61)	260.2 (0.101) H-4→L (0.50) H-2→L (0.33)	258.6 (0.363) H-6→L (0.43) H→L+2 (0.38)
	n = 17 224.1 (0.523) H→L+2 (0.54)	n = 8 254.1 (0.317) H→L+3 (0.46) H→L+2 (0.12)	n = 6 254.5 (0.655) H→L+2 (0.67)	n = 10 249.3 (0.283) H→L+2 (0.45)
		n = 9 251.9 (0.550) H-4→L (0.56) H→L+3 (0.31)	n = 10 244.8 (0.305) H-5 \rightarrow L (0.51) H-1 \rightarrow L+3 (0.30) H-4 \rightarrow L (0.29)	n = 13 242.3 (0.113) H-5→L+1 (0.42)
		n = 10 250.2 (0.230) H-1→L+1 (0.57) n = 12 246.8 (0.301) H-5→L (0.55) H-2→L+2 (0.28) H-3→L (0.23)	n = 18 226.5 (0.398) H-7→L (0.55) H-1→L+3 (0.28)	n = 19 227.9 (0.110) H→L+3 (0.57)
		n = 13 243.9 (0.060) H-1→L+3 (0.55) n = 16		
		239.6 (0.106) H-1→L+3 (0.46) H-1→L+6 (0.37) H→L+6 (0.30)		
S ₀ T ₁	387.3 H→L (0.59)	405.8 H→L+1 (0.43) H-7→L+4 (0.25)	404.8 H→L+2 (0.58)	437.9 H→L (0.61)
S ₀ -T ₂	342.0 H-3→L+6 (0.28) H-1→L+5 (0.26) H-3→L+7 (0.24)	402.8 H→L+3 (0.45) H-6→L+5 (0.25)	386.8 H-1→L (0.59)	361.6 H-1→L (0.54)
S ₀ -T ₃	341.5 H-2→L+7 (0.36)	387.4 H-2→L (0.45)	315.5 H→L (0.68)	342.1 H-5→L+4 (0.25) H-4→L+6 (0.24) H-2→L+6 (0.24)

^aH = HOMO, L = LUMO.

Figure S14. Calculated electronic absorption spectra of **1a**, **1b**, **1c** and **2a** (data from Gaussview¹⁶ with 1500cm⁻¹ half-width at half height).

LUMO

L+1

L+2

H-2

номо

H-1

H-5

H-4

Figure S15. Spatial plots of selected frontier orbitals of the DFT optimized ground state of 1a.

H-3

H-1

Figure S16. Spatial plots of selected frontier orbitals of the DFT optimized ground state of 1b.

L+3

H-1

HOMO

LUMO

H-4

H-3

Figure S17. Spatial plots of selected frontier orbitals of the DFT optimized ground state of 1c.

L+1

L+2

L+3

номо

LUMO

Figure S18. Spatial plots of selected frontier orbitals of the DFT optimized ground state of 2a.

Figure S19. Singly occupied molecular orbitals (top: SOMO, middle: SOMO-1) obtained by restricted open-shell single point calculations on the optimized triplet state geometries and spin density surfaces (bottom) for the optimized triplet states of **1a**, **1b**, **1c** and **2a** (the positive spin densities are shown in blue and the negative ones are in green).

1b

Figure S20. Main changes in the bond distances (difference larger than 0.02 Å) of the DFT optimized triplet state of **1a**, **1b**, **1c** and **2a** in comparison with the corresponding ground state (values reported on the triplet state geometry)

Cartesian coordinates and energies from the DFT optimized geometry of 1a (ground state):

Au	-0.68178700	-0.24832700	-0.03118200
С	-2.58861500	0.54117500	0.10709400
С	-2.98159700	1.86995000	0.24689800
Н	-2.23118700	2.65443000	0.28245500
С	-4.33335600	2.21610600	0.34311000
Н	-4.61468200	3.26072000	0.44864200
С	-5.31748800	1.23307200	0.30539900
С	-4.95788700	-0.10785700	0.17134900
С	-3.60866700	-0.42054400	0.07610700
С	-1.80827500	-1.96521600	-0.14874800
С	-3.83033600	-2.94514600	-0.14954400
Н	-4.90607900	-3.01130800	-0.10894500
С	-2.89012600	-3.91549100	-0.29634100
Н	-2.99129700	-4.98522900	-0.40216700
С	-0.39583500	-4.00717600	-0.41243700
Н	0.32564600	-3.38001500	-0.93435300
Н	-0.56307600	-4.92308700	-0.98283600
Н	-0.01043600	-4.25613600	0.58000800
С	0.22193400	1.58052500	0.07965100
С	0.84593500	2.02223000	1.23836300
С	1.46890300	3.26231400	1.32839300
С	1.47823000	4.10032500	0.21988400
С	0.86412800	3.69070300	-0.95753100
С	0.24747400	2.44466700	-1.00749900
F	-0.34479100	2.09698600	-2.15974900

F	0.86878600	4.49648400	-2.02100300	
F	2.07061500	5.29161300	0.28644400	
F	2.05425200	3.65572200	2.46096400	
F	0.86141700	1.24399800	2.33204800	
С	1.22755200	-1.08374100	-0.10289300	
С	2.06398200	-0.94629100	-1.20204800	
С	3.36201400	-1.44714500	-1.23328900	
С	3.85965700	-2.11256900	-0.11925300	
С	3.05296800	-2.27290400	1.00156600	
С	1.76175600	-1.75744800	0.98641500	
F	1.62736000	-0.31457800	-2.30439100	
F	4.13206500	-1.29794600	-2.31261800	
F	5.09859800	-2.60145000	-0.12787400	
F'	3.52349300	-2.92423900	2.06794900	
F'	1.00801500	-1.96625900	2.08316000	
N	-3.14384900	-1.75846500	-0.06323900	
N	-1.65735600	-3.29380400	-0.29916200	
Н	-6.36732200	1.50219600	0.38081400	
Н	-5.72436900	-0.87806300	0.14434800	
Zero-point corre	ction=		0.273315 (Hartree/Particle)
Thermal correcti	on to Energy=		0.304233	<i>'</i>
Thermal correcti	on to Enthalpy=		0.305177	
Thermal correcti	on to Gibbs Free	Energy=	0.208385	
Sum of electroni	c and zero-point	Energies=	-2085.081320	
Sum of electroni	c and thermal En	ergies=	-2085.050402	
Sum of electroni	c and thermal En	thalpies=	-2085.049458	
Sum of electroni	c and thermal Fr	ee Energies=	-2085.146249	
5		groo		

	se and energies in		inzed geenied y er i	
Au	0.81719500	-0.65051300	-0.00515300	
С	2.87028500	-0.46293300	-0.00240100	
С	3.63901700	0.69904500	-0.00487700	
н	3 13935400	1 66347200	-0 00815400	
	5 03591900	0 63428800	-0 00323800	
Ч	5 61660500	1 55338900	-0 00525400	
C C	5 69719200	-0 59649900	0.00023400	
C	1.04/02/00	1 77022100	0.000880000	
C	4.94606400	-1.77823100	0.00329600	
C	3.56064200	-1.683/0000	0.00165700	
С	1.37278100	-2.62301400	0.00074400	
С	3.00408200	-4.16862600	0.00785200	
H	4.01106000	-4.55516100	0.01030000	
С	1.80804900	-4.81440500	0.00763200	
Н	1.57505300	-5.86874700	0.00998200	
С	-0.60182300	-4.15232400	0.00359900	
Н	-1.15880300	-3.21364500	-0.00366700	
Н	-0.85324400	-4.72432200	0.90096800	
Н	-0.85151700	-4.73628700	-0.88663000	
Ν	2.71330700	-2.82610400	0.00362100	
Ν	0.82023200	-3.84945100	0.00291100	
Н	6.77271600	-0.64461700	0.00205900	
Н	5,45191200	-2.74049600	0.00632700	
C	0.53193800	1.30513900	-0.00660700	
C	-1 18491100	-0 88494200	-0 00724200	
C	0 36955000	2 51481500	-0.00317800	
C	-2 40444500	-0 97954000	-0.00382000	
C	0 17/33200	3 92807200	-0.00120300	
C	0.12146500	1 61196100	1 20700500	
C	0.12140500	4.63540200	-1 20766300	
C	-0.06621100	6 02200300	1 21/29500	
с и	0.22609000	4 10795100	2 14400600	
n C	0.22090900	4.1070J100 6.01220700	2.14499000	
	-0.13743300	0.01330700	-1.21170000	
п С	0.00307300	4.09009300	-2.14855000	
C .	-0.20156400	6.68263700	0.00204400	
n H	-0.10980100	6.58481300	2.14232600	
H	-0.27066300	0.30/80000	-2.1382/500	
C	-3.82649300	-1.09829100	0.00032000	
C	-4.54658900	-1.16898300	-1.20550100	
C	-4.540/6600	-1.14543800	1.210/8200	
C	-5.93199300	-1.28940700	-1.206/6300	
H	-4.00651000	-1.12202300	-2.14663700	
С	-5.92610500	-1.26581400	1.22105000	
Н	-3.99609600	-1.08007400	2.14815500	
С	-6.59705500	-1.33703500	0.00932800	
H	-6.49640100	-1.34191600	-2.13281800	
H	-6.48606100	-1.30025600	2.15065000	
F	-0.38312300	8.02055000	0.00360400	
F	-7.94140000	-1.45494300	0.01373500	
Zero-point correc	tion=		0.359732 (Hai	tree/Particle)
Thermal correctio	on to Energy=		0.386094	
Thermal correctio	on to Enthalpy=		0.387038	
Thermal correctio	on to Gibbs Free	e Energy=	0.297968	
Sum of electronic	and zero-point	: Energies=	-1443.9655	085
Sum of electronic	and thermal Er	nergies=	-1443.9392	224
Sum of electronic	and thermal Er	nthalpies=	-1443.9382	280
Sum of electronic	and thermal Fr	ee Energies=	-1444.0273	350

Cartesian coordinates and energies from the DFT optimized geometry of **1b** (ground state):

Au	-0.74430500	-0.49433900	0.00001600	
С	-2.80434200	-0.38676900	-0.00004100	
C	-3.62513400	0.73919500	-0.00003300	
н	-3 17969100	1 72988100	0 00008300	
C	-5 01848000	0 61837900	-0 00018600	
U U	-5 63605600	1 51293500	-0.00016600	
C	-5 61719000	-0 63797100	_0 00037000	
C	-5.01710000	1 79664000	-0.00037000	
C	-4.82384700	-1.70004000	-0.00038300	
C	-3.44604200	-1.63501400	-0.00019200	
C	-1.22482700	-2.49265100	-0.00002800	
C	-2./9546/00	-4.09/96200	-0.00002100	
Н	-3.78681700	-4.52299400	-0.00000900	
С	-1.57570800	-4.69796300	0.00026000	
H	-1.30321900	-5.74282500	0.00048400	
С	0.80799000	-3.93948400	0.00035100	
Н	1.32481300	-2.97815800	0.00041900	
Н	1.08256800	-4.50600200	-0.89365200	
Н	1.08245700	-4.50613800	0.89429400	
С	-0.50686900	1.53324900	0.00012900	
С	-0.41423700	2.25530900	-1.18063000	
С	-0.24112400	3.63508400	-1.20110400	
С	-0.15410400	4.32807900	0.00021400	
С	-0.24063900	3.63494000	1.20148800	
C	-0.41374600	2,25516700	1,18094000	
F	-0.49364200	1.62517600	-2.36375500	
- F	-0 15902800	4 29924700	-2 35625000	
т Т	0.01078300	5 65083800	0 00026500	
т Т	-0 15808700	4 29898200	2 35667000	
r r	-0 49270100	1 62/01500	2.35007000	
L	-2 55573400	-2 74492900	_0_00013600	
IN NT	-2.55575400	-2.74492900	-0.00013000	
IN	-0.02552800	-3.09372200	0.0002/000	
H	-6.69957400	-0.73175300	-0.00051800	
н	-5.29041000	-2.76936100	-0.00056500	
C	1.26453200	-0.63600200	0.00006500	
C	2.48/56300	-0.66/25900	-0.00000100	
C	3.91397700	-0.72032700	-0.00010500	
C	4.63213500	-0.74769900	1.2084/600	
С	4.63196400	-0.74622800	-1.20881600	
С	6.02154400	-0.80381000	1.21385100	
Н	4.08792400	-0.71853300	2.14/93500	
С	6.02137700	-0.80233800	-1.21445900	
Н	4.08762400	-0.71594000	-2.14816300	
С	6.69140300	-0.83152000	-0.00037000	
Н	6.58517600	-0.82249000	2.14164700	
Н	6.58487200	-0.81988900	-2.14236100	
F	8.03898700	-0.88700000	-0.00049100	
Zero-po	pint correction=		0.316555	(Hartree/Particle)
Thermal	l correction to Energy=		0.345632	,
Thermal	l correction to Enthalpv=		0.346576	
Therma	l correction to Gibbs Free	Energy=	0.251931	
Sum of	electronic and zero-point.	Energies=	-1764.	525994
Sum of	electronic and thermal En	ergies=	-1764	496917
Sum of	electronic and thermal En	thalpies=	-1764	495972
Sum of	electronic and thermal Fr	ee Energies=	-1764	590618
Juni OL	STOSSTONITO ANA CHOTMAT LT	Thetates-	T / 0	

Cartesian coordinates and energies from the DFT optimized geometry of 1c (ground state):

				gieana etate).
Au	0.32319300	-0.29630600	-0.06337000	
С	-0.65335300	-2.10271900	-0.19971000	
С	-2.59586200	-3.24334300	-0.25248500	
н	-3.66564200	-3.37739600	-0.24196100	
С	-1.57483900	-4.13414400	-0.35789200	
H	-1.58549400	-5.20945800	-0.45370100	
C C	0 92137300	-4 02922100	-0 39023000	
U H	1 60608600	-3 36359100	-0 91416600	
11	0 04117200	1 07102200	0.02510100	
н 11	1 20021000	4.97193300	-0.93319100	
n G	1.29021900	-4.21032400	0.01033000	
	1.08236000	1.59668900	0.05/34300	
C	1.62434500	2.09634200	1.23356700	
C	2.15022200	3.38006300	1.33064200	
C	2.14274800	4.20420200	0.211/5/00	
С	1.60862300	3.73720100	-0.98311700	
C	1.08795100	2.44839900	-1.03999600	
F	0.56916300	2.04592200	-2.20954800	
F	1.59618800	4.52948900	-2.05663100	
F	2.64211600	5.43699900	0.28526000	
F	2.65842400	3.82845600	2.47990200	
F	1.65195300	1.33384200	2.33782700	
С	2.29091100	-0.98065500	-0.07151900	
С	3.14058800	-0.80153300	-1.15442700	
С	4.47238500	-1.20518900	-1.14627700	
С	4.99104300	-1.81106500	-0.00812300	
С	4.17200300	-2.00992600	1.09741500	
C	2.84691000	-1.59230100	1.04334600	
F	2,68452600	-0.22485800	-2.27863300	
- - -	5.25459900	-1.01967400	-2,21107000	
- - -	6.26248700	-2.20668700	0.02091000	
- 7	4 66370800	-2 60480200	2 18685000	
E.	2 08529600	-1 83635200	2 12681500	
N	-2.00504900	-2 00423700	_0 15992100	
N	-0.30505700	-3 /1569300	-0 32927700	
IN C	-2 56514300	-0.70974200	-0.04784900	
C	-1 64445200	-0.70974200	-0.04/84900	
C	2 02201200	0.34500100	0.00573300	
C	-3.92291200	-0.44JJ0700	0.003/3300	
C	-2.13498600	1.0514/500	0.12809100	
C	-4.406/1/00	0.86690200	0.119/8600	
C	-3.50228500	1.92599100	0.18245200	
H	-1.43448600	2.4/901400	0.18043600	
C	-5.84920400	0./3134000	0.14347300	
C	-6.10193800	-0.64427200	0.04212000	
Н	-3.85179000	2.95107600	0.27238200	
С	-6.92890100	1.61255700	0.23729800	
C	-7.37360400	-1.19102500	0.02869700	
C	-8.21757300	1.08759800	0.22592900	
Н	-6.76760800	2.68420400	0.31682100	
С	-8.43640500	-0.29374000	0.12314100	
Н	-7.53084800	-2.26219400	-0.05124900	
Н	-9.06985800	1.75750200	0.29769300	
Н	-9.45385900	-0.67489700	0.11685700	
0	-4.93416300	-1.36620500	-0.04156300	
Zero-point correc	tion=		0.337747 (Hartr	ree/Particle)
Thermal correctio	n to Energy=		0.373164	
Thermal correctio	n to Enthalmy-		0 374108	
Thermal correctio	n to Gibbs Free	Energy=	0 267351	
Sum of electropic	and zero-noint	Energies=	-2389 764660)
Sum of electronic	and thermal Fr	eraies=	-2389 7282/5	
Sum of plastropic	and thermal Er	thalpiec-	_2202.122240	,
Sum of electronic	and thermal Er	nenaipies-	-2380 835050	-
JAM OF CIECCIONITC	ana chermar fr	.cc hucrytes-	2000.000000	,

C	Cartesian	coordinates and	l energies t	from the DFT	optimized (geometry	of 2a ((ground	state):
								\ U		

	in acco a	la energiee		meed geenned,	
Au	-	0.69569600	-0.20977300	-0.00748500)
С	- 1	2.53534600	0.66360300	0.12631500)
С	- 1	2.88645200	1.99555100	0.27480400)
Н	- 1	2.10759300	2.75054200	0.33179900)
С	-	4.22300400	2.39745600	0.35148000)
Н	-	4.47176500	3.44805000	0.46634000)
С	-	5.30351300	1.42209400	0.27650200)
С	-	5.03769700	0.09888500	0.13630800)
С	-	3.66629000	-0.31001400	0.06428200)
С	-	1.88424500	-1.85213300	-0.12516400)
С	-	3.98298100	-2.77662100	-0.15376700)
H	-	5.05959900	-2.82157300	-0.13120200)
С	-	3.05792200	-3.76211000	-0.27755100)
H	-	3.20071100	-4.82869900	-0.37764000)
С	-	0.57078300	-3.96497100	-0.34809900)
H		0.09806400	-3.50531800	-1.07815900)
H	-	0.81105300	-4.98106900	-0.66757700)
H	-	0.07375200	-3.99719200	0.62553600)
С		0.30959000	1.57516900	0.08546100)
С		0.98253400	1.98614000	1.22890100)
С		1.67515800	3.18997800	1.30290200)
С		1.70697700	4.02562900	0.19322700)
С		1.04541000	3.64895500	-0.96901800)
С		0.36099400	2.43799700	-1.00260100)
F	-	0.27226000	2.12617900	-2.14413300)
F		1.07035000	4.45299700	-2.03442300)
F		2.36469500	5.18343400	0.24482600)
F		2.30501000	3.55239700	2.42249500)
F		0.98022200	1.21330900	2.32628100)
С		1.16320300	-1.13803200	-0.09140800)
С		1.96953700	-1.07373300	-1.22010200)
С		3.23954600	-1.63915500	-1.27761100)
С		3.74097100	-2.29731200	-0.16109000)
С		2.96512000	-2.38396200	0.98863800)
С		1.70027800	-1.80572300	1.00055100)
F		1.52962000	-0.45205300	-2.32695600)
F		3.97966700	-1.55909800	-2.38558800)
F		4.95395500	-2.84790700	-0.19453600)
F		3.43861400	-3.02703500	2.05927500)
F		0.97976600	-1.94487200	2.12925800)
N	-	3.26616700	-1.58525200	-0.06071100)
N	-	1.80179900	-3.20517500	-0.26485600)
H	-	6.33109500	1.76925600	0.33438100)
Н	-	5.84004500	-0.63120900	0.08056100)
Zero-point co	rrectio	n=		0.268572	(Hartree/
Thermal corre	ction t	o Energy=		0.300138	
Thermal corre	ction t	o Enthalpy	=	0.301082	

Cartesian coordinates and energies from the DFT optimized geometry of **1a** (triplet state):

Zero-point correction=0.268572 (Hartree/Particle)Thermal correction to Energy=0.300138Thermal correction to Enthalpy=0.301082Thermal correction to Gibbs Free Energy=0.202287Sum of electronic and zero-point Energies=-2084.972166Sum of electronic and thermal Energies=-2084.940600Sum of electronic and thermal Enthalpies=-2084.939656Sum of electronic and thermal Free Energies=-2085.038451

Gartoon				(inplot otato).
Au	-1.04647500	-0.26152600	0.00529900	
С	-2.79597500	0.76675400	0.03937100	
С	-3.02063700	2.13647300	0.08950000	
Н	-2.16407300	2.80458700	0.10958600	
С	-4.31196100	2.66027700	0.11723300	
Н	-4.46680100	3.73425800	0.15873500	
С	-5.47894800	1.78222100	0.09313000	
С	-5.33642300	0.43194200	0.04582300	
С	-4.01159600	-0.10302100	0.02070000	
С	-2.36699700	-1.79969500	-0.03820800	
С	-4.53411700	-2.54590400	-0.05874200	
Н	-5.61094700	-2.49723800	-0.05354100	
С	-3.69425800	-3.61125800	-0.10189000	
Н	-3.92220500	-4.66697400	-0.14231200	
С	-1.23761900	-4.03060100	-0.14265300	
Н	-0.33804200	-3.41274200	-0.13979400	
Н	-1.26478500	-4.63035000	-1.05769300	
Н	-1.22911800	-4.69215700	0.72931600	
Ν	-3.72040100	-1.41582900	-0.02086700	
N	-2.39576400	-3.15923800	-0.08994200	
Н	-6.47090800	2,22454200	0.11438700	
Н	-6.20329500	-0.22273200	0.02912700	
C	0.05080100	1.38880100	0.02442300	
C	0.66887800	-1.30721900	-0.00397500	
C	0.72362300	2,40790600	0.02297500	
C	1.74755200	-1.88500600	0.00026800	
C	1,52538100	3.58755700	0.03231300	
C	1.30490400	4.62022300	-0.89621700	
C	2,56088300	3.74241200	0.97141300	
C	2.08753200	5.76993600	-0.89047600	
н	0.51280500	4.50935100	-1.63125100	
C	3 34805000	4 88860600	0 98798400	
н	2,74270200	2.94874700	1.68997300	
C	3,09606200	5.88313800	0.05463900	
н	1,92589200	6.57081300	-1,60566900	
н	4,14937500	5.01620400	1,70952500	
C	3.01553700	-2.53732800	-0.01681400	
C	3 28155700	-3 63496400	0 82114600	
C	4.03520800	-2.08943300	-0.87662800	
C	4,51926100	-4.26912500	0.80266700	
H	2.50747900	-3.98297100	1.49932300	
C	5,27532500	-2.71706600	-0.90507200	
H	3.84208900	-1.23803800	-1.52237400	
C	5,49442800	-3.79792800	-0.06358000	
н	4.73480900	-5.11446000	1,44914000	
н	6,06790600	-2.37780500	-1.56510500	
 	3.85802500	6.99790300	0.06568200	
<u>-</u> Ч	6,69676200	-4.41047900	-0.08682900	
-	0.000,0200	111101/000	0.00002300	
Zero-n	oint correction=		0.354598 (Harty	ree/Particle)
Therma	l correction to Energy=		0.382831	, - 41 01010)
Therma	l correction to Enthalpy=		0.383775	
Therma	l correction to Gibbs Fre	e Enerav=	0.286437	
Sum of	electronic and zero-poin	t Energies=	-1443.856140)
Sum of	electronic and thermal E	nergies=	-1443.827907	7
Sum of	electronic and thermal E	nthalpies=	-1443.826963	3
Sum of	electronic and thermal F	ree Energies=	-1443.924301	-
			=	

Cartesian coordinates and energies from the DFT optimized geometry of **1b** (triplet state):

			mized geometry of	
Au	0.79596300	-0.47967300	-0.00015700	
С	2.82000200	-0.13764800	-0.00002600	
С	3.50209600	1.07901000	-0.00003000	
Н	2.94257100	2.00995600	-0.00007500	
С	4.89878300	1.12377900	0.00006000	
Н	5.40550300	2.08544800	0.00006900	
С	5.64357300	-0.05321400	0.00012000	
С	4.99451900	-1.28711600	0.00011500	
С	3.60591700	-1.30247400	0.00004300	
С	1.50007300	-2.40667700	-0.00001400	
С	3.24780100	-3.82190500	0.0000100	
Н	4.28164000	-4.12953600	-0.00004000	
С	2.10640500	-4.55911600	-0.00011100	
Н	1.95810900	-5.62873600	-0.00019200	
С	-0.34672600	-4.08442300	0.00036800	
Н	-0.97091900	-3.19047300	-0.00322800	
Н	-0.55659600	-4.67522000	0.89661400	
Н	-0.55518600	-4.68168800	-0.89188300	
С	0.34425800	1.51548200	-0.00001000	
С	0.17446800	2.22397100	1.18106500	
С	-0.14696100	3.57718600	1.20151900	
С	-0.30886500	4.25688500	0.00028600	
С	-0.14704000	3.57742200	-1.20109200	
С	0.17437700	2.22419800	-1.18093400	
F	0.32083900	1.60864400	2.36479000	
F	-0.30162600	4.22856100	2.35652000	
F	-0.61736900	5.55373900	0.00042300	
F	-0.30177900	4.22902700	-2.35595400	
F	0.32069300	1.60911800	-2.36479000	
Ν	2.85352400	-2.50476200	0.00001300	
Ν	1.04559100	-3.67499800	-0.00017600	
Н	6.72941100	-0.01743600	0.00017100	
Н	5.57220500	-2.20796800	0.00015500	
С	-1.17895500	-0.81648500	-0.00060600	
С	-2.43983800	-0.91536600	-0.00039700	
С	-3.78884100	-1.00361000	-0.00015500	
С	-4.48524800	-2.30495500	0.00081400	
С	-4.62968800	0.20920200	-0.00094200	
С	-5.84490600	-2.36801200	0.00091200	
Н	-3.88680500	-3.21058700	0.00147200	
С	-5.98630400	0.11727400	-0.00082800	
Н	-4.13267900	1.17392300	-0.00163200	
С	-6.59521300	-1.16540200	0.00007800	
Н	-6.37341600	-3.31704400	0.00162600	
Н	-6.61847200	1.00046700	-0.00141400	
F	-7.93768500	-1.24316400	0.00017200	
Zero-point co	rrection=		0.311917 (H	artree/Particle)
Thermal corre	ction to Energy=		0.341939	
Thermal corre	ction to Enthalpy=		0.342883	
Thermal corre	ction to Gibbs Free	Energy=	0.244305	
Sum of electr	onic and zero-point	Energies=	-1764.42	1788
Sum of electr	onic and thermal Er	ergies=	-1764.39	1767
Sum of electr	onic and thermal Er	thalpies=	-1764.39	0823
Sum of electr	onic and thermal Fr	ee Energies=	-1764.48	9401

Cartesian coordinates and energies from the DFT optimized geometry of 1c (triplet state):

		eu geeeu j	
Au 0.31566500	-0.29579500	-0.05031100)
C -0.65674100	-2.08489700	-0.18717600)
C -2.60020600	-3.26854100	-0.24882000)
н -3.66614700	-3.42811900	-0.24341400)
C -1.55850800	-4.13213100	-0.35008700)
н –1.55525400	-5.20795800	-0.44684700)
C 0 93457100	-4 00075400	-0 37631200	
н 1 56912100	-3 41994400	-1 04672500	
u 0.93972100	-5 01946700	_0 75097000	
н 0.05070000	- 0.01040700	-0.75987000	
п 1.30/21000	-4.02000700	0.01001900	
C 1.09360200	1.59586600	1 22441200	
L 1.65753600	2.09503500	1.22441200	
2.19/2/600	3.3/385300	1.31103000	
2.181/2800	4.19599400	0.19092600	
C 1.62582100	3.73114600	-0.99455200	
C 1.09259300	2.44689900	-1.04079400)
F 0.55383200	2.05035100	-2.20372300)
F 1.60474500	4.52169800	-2.06988900)
F 2.69343000	5.42469400	0.25459000)
F 2.72585100	3.82033200	2.45233500)
F 1.69442600	1.33786700	2.33188400)
C 2.27876700	-0.98653900	-0.06729000)
C 3.11522000	-0.82521500	-1.16370000)
C 4.44651100	-1.23007600	-1.16710600)
C 4.98012000	-1.81898900	-0.02710500)
C 4.17569900	-1.99854100	1.09199500)
C 2.85010900	-1.58038600	1.04976100)
F 2.64645600	-0.26544600	-2.29132900)
F 5.21459800	-1.06208300	-2.24561900)
F 6.25185600	-2.21596400	-0.00906200)
F 4.68168300	-2.57627600	2.18464000)
F 2.10652100	-1.80485900	2.14949800)
N -2.03670300	-2.00485500	-0.15069500)
N -0.38770400	-3,40596700	-0.31705900)
C =2.60961200	-0.76890400	-0.04097000	
C -1.61961400	0.35402400	0.03360000)
C = 3,95809000	-0.48026300	0.00638300)
C -2 12064500	1 65436200	0 16230200	
C =4 43102900	0 82985800	0 12927000	
C -3 47804000	1 93749900	0.21267700	
н –1 41631100	2 47836200	0.22518600	
C _5 83631300	0 73393300	0.14544200	
C -6 13450500	-0 65233300	0.12994200	
u _3 93772900	2 95636100	0.02001000	
C	1 6/092600	0.21453300	
C -0.90049900	1 16100400	0.24455500	
C -7.41575500	-1.10100400	0.00041300	
C = 0.19913000	2 71592700	0.22302900	
H = 0.72114500	2.71302700	0.33379600	
-8.45562400	-0.23073800	0.10/92/00	
H = 7.60415400	-2.22615600	-0.0809/100	
п -9.038/5500	1.030/2000	0.29833600	J
н -9.4833/900	-0.581//600	0.09559/00	1
0 -4.98537100	-1.38601400	-0.05422800)
Zero-point correction=		0.333109	(Hartree/Particle)
Thermal correction to Energy=		0.369107	- ,
Thermal correction to Enthalpy=	=	0.370052	
Thermal correction to Gibbs Fre	ee Energy=	0.261176	
Sum of electronic and zero-poir	nt Energies=	-2389.	666885
Sum of electronic and thermal H	Energies=	-2389.	630886
Sum of electronic and thermal H	Enthalpies=	-2389.	629942
Sum of electronic and thermal H	Free Energies=	-2389.	738818

Cartesian coordinates and energies from the DFT optimized geometry of 2a (triplet state):

References

- (1) Rigaku Oxford Diffraction, **2015**.
- (2) Clark, R. C.; Reid, J. S. Acta Cryst. A **1995**, 51, 887.
- (3) CrysAlisPro (version 1.171.36.20 38.41), Rigaku Oxford Diffraction, **2015**.
- (4) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H.
 J. Appl. Cryst. 2009, 42, 339.
- (5) Sheldrick, G. M. Acta Cryst. A 2008, 64, 112.
- (6) Sheldrick, G. M. Acta Cryst. A **2015**, 71, 3.
- (7) a) Palatinus, L. & Chapuis, G. *J. Appl. Cryst.* 2007, 40, 786; b) Palatinus, L. & van der Lee, A. *J. Appl. Cryst.* 2008, 41, 975; c) Palatinus, L., Prathapa, S. J. & van Smaalen, S. *J. Appl. Cryst.* 2012, 45, 575.
- (8) Sheldrick, G. M. Acta Cryst. C 2015, 71, 3.
- (9) Spek, A. L. J. Acta Cryst. D 2009, 65, 148.
- (10) Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.
- (11) C. Adamo, V. Barone, J. Chem. Phys. 1999, 110 (13), 6158–6170.
- (12) J. T. H. Dunning, P. J. Hay, *Modern Theoretical Chemistry*. Plenum: New York, 1976; Vol. 3.
- (13) R. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys. 1971, 54 (2), 724–728.
- (14) (a) R. Bauernschmitt, R. Ahlrichs, *Chem. Phys. Lett.* **1996**, *256* (4-5), 454–464;
 (b) M. E. Casida, C. Jamorski, K. C. Casida, D. R. Salahub, *J. Chem. Phys.* **1998**, *108* (11), 4439–4449; (c) R. E. Stratmann, G. E. Scuseria, M. J. Frisch, *J. Chem. Phys.* **1998**, *109* (19), 8218–8224.
- (15) (a) V. Barone, M. Cossi, *J. Phys. Chem. A* **1998**, *102* (11), 1995–2001; (b) M.
 Cossi, N. Rega, G. Scalmani, V. Barone, *J. Comput. Chem.* **2003**, *24* (6), 669–681.

(16) GaussView, Version 5.0, R. Dennington, T. Keith, J. Millam, *Semichem Inc.*, Shawnee Mission, KS, 2009.