Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

-1-Supplimentary Materials

A wearable microwave absorption cloth

Wei-Li Song,^{*a,b*} Li-Zhen Fan,^{*a,**} Zhi-Ling Hou,^{*d,**} Kai-Lun Zhang,^{*d*} Yongbin Ma,^{*b*} Mao-Sheng

 $Cao, ^{c}$

^aInstitute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China

^bInstitute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081,

P.R. China.

^cSchool of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081,

China

^dSchool of Science, Beijing University of Chemical Technology, Beijing 100029, China

*Corresponding authors: E-mail: fanlizhen@ustb.edu.cn; Tel./fax: +86-10-62334311; houzl@mail.buct.edu.cn

Figure S1 SEM images of the cross-section views for the neat NW (a and b);

-2-

Figure S2 SEM and TEM images of the samples: cross-section SEM views of RGO-NW (a and b) and RGO-NW-4CNT (e and f); Interface SEM views of RGO-NW (c) and RGO-NW-4CNT (g); TEM image of RGO surface in RGO-NW (d) and RGO-NW-4CNT (h).

-4-Figure S3 Mass percentage (a), XRD spectra (b) and surface resistivity (c) of the samples as

marked.

-5-

Figure S4 3D and 2D plots of the microwave absorption for the samples as marked. The

calculated RL was based on waveguide method.

-6-

Figure S5 Microwave absorption simulations: calculations of the reflection loss vs. frequency

a ε'=2.0, d=3 mm **δ** ε'=2.0, d=4 mm **C** ε'=2.0, d=5 mm 0 0 0 -20 -20 20 40 RL 40 RL 40 RL 60 60 60 9 9 10 10 9 2 10 11 / 11 12 1 11 11 12 1 12 1 **d** ε'=2.4, d=3 mm ε'=2.4, d=4 mm ε'=2.4, d=5 mm е 0 -20 -40 RL -20 -20 -40 RL -40 RL -60 -60 9 -60 10 11 *f* 11 12 1.0 2.0 2.0 10 10 11 12 1.0 ¹¹ 12 1.0 9 2.0 1.5 1.5 1.5 g ε'=2.8, d=3 mm h ε'=2.8, d=4 mm ε'=2.8, d=5 mm 20 20 -20 40 RL -40 RL 40 RL 60 -60 60 10 10 2.0 11 12 1.0 1.5 11 12 1.0 1.5 10 2.0 12 1.0 1.5 11 ε'=3.2, d=3 mm ε'=3.2, d=4 mm ε'=3.2, d=5 mm k 0 20 -20 20 RL -40 RL 40 RL -60 9 -60 10 • 11₁₂ 1.0 3.0 9 30 3.0 10 9 11 12 1.0 2.0 10 11 12 1.0 2.0 2.0 ε" ε" ε'=3.6, d=3 mm n ε'=3.6, d=4 mm 0 ε'=3.6, d=5 mm m 0 0 -20 20 -20 40 RL 40 RL -40 RL -60 -60 -60 9 10 3.0 9 10 11 12 1.0 9 3.0 11 12 1.0 10 2.0 2.0 11 2.0 12 1.0

and imaginary permittivity at fixed real permittivity and thickness.

-7-

Figure S6 Reflection

loss performance via

 Table S1 Optimal imaginary permittivity at fixed real permittivity and thickness according to the plots in Figure S4. The term of "–" indicates no peak observed in the plot.

	Optimal imaginary	Optimal imaginary	Optimal imaginary
	permittivity at fixed	permittivity at fixed	permittivity at fixed
Fixed real permittivity	thickness=3 mm	thickness=4 mm	thickness=5 mm
	(Corresponding	(Corresponding	(Corresponding
	Frequency)	Frequency)	Frequency)
2.0	_	_	~1.5
2.0			(12.2 GHz)
2.4			~1.7
2.4	_	_	(10.5 GHz)
2.0		~1.9	~1.8
2.8	_	(12.2 GHz)	(9.6 GHz)
2.0		~2.0	~1.9
3.2	_	(11.2 GHz)	(9 GHz)
2.6		~2.2	~2.0
3.6	—	(10.4 GHz)	(8.4 GHz)

Catagories	Features	Qualification	Description
Mechanical	Light weight	Yes	Absorbing layer: density<0.17 g/cm ³
Mechanical	Flexibility	Yes	
Mechanical	Durability	Yes	Absorbing layer: excellent retention upon 200 bending cycles
Mechanical	Robustness	Yes	Absorbing layer: tensile strength >5 MPa
Functional	Effective absorption band	Yes	8.2~14.5 GHz
Functional	Weak surface reflection	Yes	ε '<3.5 (see snell's law)
Functional	Breathability	Yes	All porous structures
Manufacturing	Cost	Medium	GO to be potentially reduced
Manufacturing	Scalability	Yes	
Manufacturing	Small loading	Yes	0.92 vol% filler loading in NW
Manufacturing	Processible	Yes	

-9-**Table S2** Overal performance of the wearable cloth fabricated in this work

Table S3The state-of-the-art in microwave absorption materials with wave guide method (X band or Ku band) and coaxial method (2-18 GHz). The

absorption performance is based on calculation.

Fillers of microwave absorption	Filler loadings in matrices	Features andmechani cal	Flexibility and Durability	Density [a] (g/cm ³)	Absorption peak/span of absorption >10 dB (Investigated regions)	Scalability and (processibility)	Breathability	Refs.
composites RGO-NW- CNT32	0.92 vol% in Porous NW	Robust; Tensile strength >5 MPa	Highly flexible and excellent performance retention upon bending for 200 cycles	<0.17	-60 dB / 8.2-12.4 GHz (8.2-12.4 GHz)	Scalable (could be freely processed into any shape)	Sufficiently porous for breathing	This work
RGO/Ni	60 wt% in paraffin	Soft	_	>0.8	-17 dB/ 3.0–4.0 GHz, 12.0–	_	_	1

	wax				14.0 GHz			
					(2-18 GHz)			
	40 wt% in				-27 dB /			
RGO/Fe ₃ O ₄	paraffin	Soft	_	>0.8	4.5–6.5 GHz	_	_	2
	wax				(2-18 GHz)			
	60 wt% in				-44.6 dB /			
$NIFe_2O_4$	paraffin	Soft	_	>0.8	6.5-9.2 GHz	_	_	3
nanorod-KGU	wax				(2-18 GHz)			
SiO ₂ @Fe ₃ O ₄ core/shell nanorod array/RGO	20 wt% in paraffin wax	Soft	_	>0.8	-31.9 dB / 5-8 GHz (2-18 GHz)	_	_	4
MnO ₂ @Fe/RGO	50 wt% in paraffin wax	Soft	_	>0.8	-17 dB/ 14-18 GHz (2-18 GHz)	_	_	5
RGO/γ-Fe ₂ O ₃	45 wt% in	Soft	_	>0.8	-59.7 dB/	_	_	6

	paraffin				8.9-11.8 GHz			
	wax				(8.2-12.4 GHz)			
RGO@Fe ₃ O ₄	25 wt% in				-38.8 dB/			
NC@carbon@M	paraffin	Soft	_	>0.8	12.3 to 17.7	_	_	7
nO ₂	wax				(2-18 GHz)			
RCOQE, O QS	25wt% in				-52 dB /			
	paraffin	Soft	_	>0.8	12-17 GHz	_	_	8
$1O_2(a)$ N1O	wax				(2-18 GHz)			
DEDOT DCO	50 wt% in				-51 dB /			
	paraffin	Soft	_	>0.8	9.1-12.8	_	_	9
$C0_{3}O_{4}$	wax				(2-18 GHz)			
oo ah o a sul	60 wt% in				-52 dB/			
carbonyl	paraffin	Soft	_	>0.8	8-12 GHz	_	-	10
iron/RGO	wax				(2-18 GHz)			
RGO@Fe ₃ O ₄ @	25 wt% in	Soft		<u>\0 9</u>	- 44.2 dB/			11
C@polyaniline(paraffin	5011	—	~0.8	9.5-15.5 GHz	_	_	11

PANI)	wax				(2-18 GHz)			
DEDOT DCO	50 wt% in				-45.4 dB/			
NiFe-O	paraffin	Soft	_	>0.8	12.5-17 GHz	_	_	12
$NIFe_2O_4$	wax				(2-18 GHz)			
	10 wt% in				-25 dB/			
JDKOU/	paraffin	Soft	_	>0.8	11.5-18 GHz	_	_	13
ZIIO	wax				(2-18 GHz)			
	50 wt% in				-21 dB/			
iron oxides/RGO	paraffin	Soft	_	>0.8	7-10.5 GHz	_	_	14
	wax				(2-18 GHz)			
	2 wt% in				-42.4 dB/			
RGO	paraffin	Soft	_	>0.8	9.44-15.58	_	_	15
	wax				(2-18 GHz)			
RGO/polypyrrol e	15 wt% in				-54.4 dB/			
	paraffin	Soft	-	>0.8	10-17 GHz	-	-	16
	wax				(2-18 GHz)			

RGO	10 wt% in NBR	Robust	flexible	~1	-57 dB / 7.5–12 GHz	_	_	17
CNT/RGO	5 wt% in PDMS	Robust	flexible	~1	(2-18 GHz) -55 dB/ 8.4-12 GHz (8.2-12.4 GHz)	_	_	18
porous Fe ₃ O ₄ @ZnO sphere/RGO	30 wt% in epoxy	Tough	_	>1	-37 dB/ 3-4 GHz, 10.3-12 GHz (2-18 GHz)	_	_	19
GN–Fe ₃ O ₄	30 wt% in epoxy	Tough	_	>1	-20 dB/ 4.5-6.5 GHz, 16.2-18 GHz (0.1-18 GHz)	_	_	20
RGO-MnFe ₂ O ₄	5 wt% in PVDF	Tough	_	>1	-29 dB / 8.0-12.88 GHz	_	_	21

					(2-18 GHz)			
	$7 \times 40/in$				-42 dB/			
RGO	/ Wt% III	Tough	_	>1	8.2-12.4 GHz	_	_	22
	silica				(8.2-12.4 GHz)			
	2.6 vo10/				38.8 dB/			
RGO	2.0 V0176	_	_	>1	14-18 GHz	_	_	23
	in PEO				(2-18 GHz)			
					-35.51 dB/			
					6.0–18.0 GHz; 26.5–			
	14			14	40.0 GHz; 75–110		Sufficiently	
RGO foam [b]	ma/am-2	Soft	Flexible	ma/am^3	GHz	Scalable	porous	24
	mg/cm 5			iiig/ciii	(2.0–18.0 GHz; 26.5–		for breathing	
					40.0 GHz; 75–110			
					GHz)			
Fe ₃ O ₄ /Al ₂ O ₃ /CN	25 wt% in	Soft	_	>0.8	-28.3 dB/	_	_	25
Cs in wax	wax	5011		- 0.0	10.5-14 GHz			23

(2-18 GHz)

-17.4 dB/

НОРС	5 wt% in	Soft	_	>0.8	11.7–16.2 GHz	_	_	26
	wax				(2-18 GHz)			
Porous	30 wt% in				-40 dB/			
carbon/Co	wax	Soft	_	>0.8	3.5–5.0 GHz	_	_	27
carbon/co	wax				(2-18 GHz)			
Carbon coated	50 wt% in				-32 dB/			
Ni	ted 50 wt% in	Soft	_	>0.8	11.2–15.5 GHz	_	_	28
INI	wax				(2-18 GHz)			
	5 wt% in				-18.5 dB/			
SWCNT		Tough	-	>1	9.0–12.0 GHz	_	-	29
	ΓŬ				(8.2-12.4 GHz)			
	$20 \text{ wt}^{0/2}$ in				-16 dB/			
Fe@MWCNT		Tough	_	>1	2-18 GHz	_	_	30
	epoxy				(2-18 GHz)			

	60 wt% in		-39 dB/							
MWCNTs/Fe	00 wt76 III	Tough	_	>1	>2.04–3.47 GHz	_	_	31		
	epoxy				(2-18 GHz)					
					-37 dB/					
MWCNTs/Co	60 wt% in	Tough	_	>1	> 2.35–3.51 GHz	_	_	31		
	epoxy				(2-18 GHz)					
					-37 dB/					
MWCNTs/Ni	60 wt% in	Tough	_	>1	> 1.83–3.07 GHz	_	_	31		
	epoxy				(2-18 GHz)					
	50 vol%									
	CI,									
	0.5 vol%				-16.9 dB/					
MWCNT/CI	MWCNT	Tough	_	>1	3.4–18.0 GHz	_	_	32		
	in epoxy				(2-18 GHz)					
	silicone									

	2 40/ -				-27 dB/			
Sm-Co/SWNT	2 wt% in	Tough	_	>1	8.2–18 GHz	_	_	33
сроху				(2-18 GHz)				
	20 mt0/ in				-48 dB/			
NII	20 Wt% In	Soft	_	>0.8	9.1–18 GHz	_	_	34
111	wax				(2-18 GHz)			
Cranhita agatad	40 with/ in				-23 dB/			
Graphile-coaled	40 Wt% In	Soft	_	>0.8	9.5–18.0 GHz	-	_	35
Femi	wax				(2-18 GHz)			
	20 mt0/ in				-32.5 dB/			
G/Fe ₃ O ₄ @Fe/Zn	20 Wt% In	soft	_	>0.8	11.2–18.0 GHz	-	_	36
0	wax				(2-18 GHz)			
$(\mathbf{E}_{\mathbf{a}}, \mathbf{N}_{\mathbf{b}})/C$	40				-26.9 dB/			
(Fe, NI)/C	40 Wt% In	soft	_	>0.8	12.3–18.0	—	_	37
nanocapsules	wax				(2-18 GHz)			
PMMA-g-CMK-	19 wt% in	-	-	>1	-27 dB/	_	_	38

3	PMMA				9.2–12.4 GHz			
					(8.2–12.4 GHz)			
	(0 40/ in				47.5 dB/			
α-Co/GN	60 Wt% In	soft	_	>0.8	9.2–14.0 GHz	_	_	39
	wax				(2-18 GHz)			
Cross-stacking								
aligned CNT				1.07	47.66 dB/			
films	70 wt%	robust	Flexible	1.97	10.8–15.2 GHz	_	_	40
coated with				g/m²	(2-18 GHz)			
PANI								
	ZnO:							
	15wt%				21.6 dB/			
MWCN1-ZnO	MWCNT:	tough	_	>1	9.2–12.4 GHz	_	_	41
	3wt% in				(8.2–12.4 GHz)			
	silica							
Carbon coils-	10 wt% in	soft	_	>0.8	-30 dB/	_	_	42

CFs	wax				8.4–18 GHz			
					(2-18 GHz)			
	15 40/				-32 dB/			
HCNFs/CF	15 Wt% In	soft	_	>0.8	8.2–18	_	_	43
	wax				(2-18 GHz)			
	CI 65wt%,							
	CF:				-12 dB/			
CI/CF	2wt%in	Tough	_	>1	8-18 GHz	_	_	44
	epoxy/silic				(2-18 GHz)			
	one resin							
	50				-36 dB/			
Fe-C nanofibers	50 wt% in	soft	_	>0.8	3.8–4.7 GHz	-	_	45
	wax				(1-15 GHz)			
					-27.9 dB/			
Fe ₃ O ₄ @Carbon	55 wt% in	soft	_	>0.8	13.1–17.8 GHz	-	_	46
nanorods	wax				(2-18 GHz)			

	10 wt% in				-41.7 dB/			
FeCo/C/BaTiO ₃	way	soft	_	>0.8	9.8–14.0 GHz	_	_	47
	wax				(2-18 GHz)			
	0.76				-15.7 dB/			
Activated CF	0.76wt% In	Tough	_	>1	5.8–18 GHz	_	_	48
	ероху				(2-18 GHz)			
					-32 dB/			
Activated CF felt	Epoxy	Tanah		× 1	4.5–6.8 GHz; 8.1–18			40
dipole array	matrix	Tougn	_	>1	GHz	—	_	49
					(2-18 GHz)			
	40 10/ :				-31 dB/			
Fe ₃ C/C(a)	40 voi% in	Tough	_	>1	14.2–21.8 GHz	_	_	50
	epoxy				(0.05–26.5 GHz)			
	20				-25 dB/			
rani/ierrocene/	ANI/ferrocene/ 30 wt% in	soft	_	>0.8	4.5-6.3 GHz	—	_	51
C-dois	wax				(2-18 GHz)			

MWCNT/FacO./	10 wt% in				-60 dB/			
	40 wt 70 III	soft	_	>0.8	10-13 GHz	_	_	52
PANI/Au	wax				(2-18 GHz)			
					-28.52 dB/			
M-BaFe ₁₂ O ₁₉	50 vol% in	soft	_	>0.8	9.3–18 GHz	_	_	53
	wax				(8-18 GHz)			
	1.5 10/ .				-75 dB/			
Fe/SiO ₂	15 vol% in	soft	_	>0.8	9.0–13.7 GHz	_	_	54
	wax				(2-18 GHz)			
					-20.1 dB/			
	66.7 wt%	T 1		. 1	12.1–16.6 GHz;			
PANI/NiZn	in epoxy	lough	_	>1	39.7–40.0 GHz	—	_	55
					(2-40 GHz)			
	50				-30 dB/			
Fe ₃ O ₄ (<i>a</i>)ZnO	50 wt% in	soft	_	>0.8	12.7–17.5 GHz	_	_	56
nanorods	wax				(2-18 GHz)			

Iron submission	26 vol0/in				-56 dB/			
	20 V0170111	soft	_	>0.8	7.0–11.9 GHz	_	_	57
cubes	wax				(2-18 GHz)			
					-32.5 dB/			
PANI/BaFe ₁₁ Ti _{0.}	50 wt% in	soft	_	>0.8	12.1–17.5 GHz	_	_	58
₅ Co _{0.5} O ₁₉	wax				(2-18 GHz)			
					-43 dB/			
Sendust	53 vol% in	Robust	_	>1	31.5–37.0 GHz	_	_	59
	PS				(1-40 GHz)			
	PANI-							
	PTSA:							
PANI-	15wt%,				-37 dB/			
PTSA/Fe ₃ O ₄	Fe3O4:	Tough	_	>1	12-18 GHz	_	_	60
	10wt%				(12-18 GHz)			
	in epoxy							
Fe ₃ O ₄ @PEDOT	50 vol% in	soft	_	>0.8	-29 dB/	_	_	61

	wax				10.3–17.5 GHz			
					(2-18 GHz)			
LAS/LAS-SiC					-42.8 dB/			
double-layer	-	Tough	-	>1	11-17 GHz	_	_	62
					(2-18 GHz)			
	10 10/ .				-13 dB/			
Flaky carbonyl	18 vol% in	soft	_	>0.8	10-18 GHz	_	_	63
iron	wax				(2-18 GHz)			
	40				-45.2 dB/			
Ni/TiO ₂	40 wt% in	soft	_	>0.8	10.2-17.5 GHz	_	_	64
	wax				(2-18 GHz)			
SnO ₂ -					-57.8 dB/			
coatedcarbonylir	50 wt% in	soft	_	>0.8	11.2-13.3 GHz	_	-	65
on	wax				(2-18 GHz)			
hexagonal Fe	15 vol% in	2			-15.3 dB/			
microflakes	wax	soft	_	>0.8	12.2–16.6 GHz	_	_	66

					(2-18 GHz)			
Silian apatad	80×40 in				-38.8 dB/			
	80 Wt76 III	soft	_	>0.8	8-14 GHz	_	_	67
carbonyl iron	wax				(2-18 GHz)			
Hydrogenated	60 wt% in	G						(0)
TiO ₂	wax	SOIL	_	>0.8	-	_	_	68
	(0				-41.2 dB/			
Nickel/Ti ₃ SiC ₂	60Wt% 1n	Tough	_	>1	8.4-11.6 GHz	_	_	69
	epoxy				(8.2-12.4 GHz)			
E- Ni	50 40/				-24.8 dB/			
N:E- O	50 Wt% III	soft	_	>0.8	13-15 GHz	_	_	70
$NIFe_2O_4$	wax				(2-18 GHz)			
Culture Courie / NT:	45				-34.4 dB/			
Srnexarerrite/Mi	45Wt% 1n	Tough	_	>1	7.5-11.4 GHz	_	_	71
Territe	epoxy				(7-12 GHz)			
SnO ₂ -coated Ni	70 wt% in	soft	_	>0.8	-42.8 dB/	_	_	72

	wax				8.2-12 GHz			
					(2-18 GHz)			
Nd dagad					-42 dB/			
	-	Tough	_	>1	8.2-10.5 GHz	_	_	73
BIFeO ₃					(8.2-12.4 GHz)			
	167				-23.5 dB/			
Fe ₃ O ₄ @CuSilica	16.7 Wt%	Tough	_	>1	3.5–13.9 GHz	_	_	74
te	in epoxy				(2-18 GHz)			
	4 407 :				-40 dB/			
Co _{0.5} Zn _{0.5} Fe ₂ O ₄	4 wt% in	_	_	>1	16.2–26.5 GHz	_	_	75
	PANI				(8–26.5 GHz)			
					-18.6 dB/			
AgNPs/SCF@B	-	-	Flexible	-	7.8–12.0 GHz	_	_	76
1 _{0.35}					(2-18 GHz)			
Basalt	10 wt% in	C.			-40 dB/			77
fiber@nickel	wax	soft	_	>0.8	8.2–12.4 GHz	_	_	//

(8.2–12.4 GHz)

-46.9 dB/

NiO@SiC	-	Tough	-	>1	8.2–12.4 GHz	—	—	78
					(8.2–12.4 GHz)			
					-24 dB/			
NiFe ₂ O ₄	wax	soft	_	>0.8	8.5–13.0 GHz	_	_	79
	matrix				(2-18 GHz)			
	50				-20.06 dB/			
PS@P(Py-	50 wt% in	soft	_	>0.8	9.16–13.75 GHz	_	_	80
PyCOOH)@N1	wax				(2-18 GHz)			
					-31 dB/			
	70 wt% in	<u>^</u>			4.0–6.6 GHz, 17.0–			0.1
Hollow CdSe	wax	soft	_	>0.8	18.0 GHz	-	_	81
					(2-18 GHz)			
	16.7 wt%				-20.7 dB/			
$(Mn_{0.5}Co_{0.5})_{3}O_{4}$	in epoxy	Tough	-	>1	7.4–10.4 GHz	_	_	82

					(2-18 GHz)			
Datio name	16.7				-28.38 dB/			
BariO ₃ nano-	10.7 Wt%	Tough	-	>1	10.1–13.1 GHz	_	_	83
torus	in epoxy				(2-18 GHz)			
					-27.38 dB/			
Fe ₃ O ₄ @SnO ₂	80 wt% in	C			3.6–5.4 GHz; 16.2–			0.4
nanorods	wax	SOIT	_	>0.8	17.5 GHz	—	—	84
					(2-18 GHz)			
					-21.8 dB/			
$(BaFe_{12}O_{19}+BaT)$	66.7 wt%	T 1		× 1	20.3–22.7 GHz;			05
10 ₃)/PANI	in epoxy	lough	-	>1	34.7–37.6 GHz	_	_	85
					(2-40 GHz)			
Hollow	20 10/ :				-15.5 dB/			
glass@nickel	30 vol% in	soft	_	>0.8	4.2–5.0 GHz	_	_	86
flowers	wax				(2-18 GHz)			
TiN	45 wt% in	soft	_	>0.8	-27 dB/	_	_	87

	wax				6.1–7.5 GHz			
					(2-18 GHz)			
D-T:O	70				-21.8 dB/			
	70 Wt% In	soft	_	>0.8	13.3–15.0 GHz	_	_	88
nanotube	wax				(0.5–15 GHz)			
D. T.O.					-24.6 dB/			
Ba11O ₃	16.7 wt%	Tough	_	>1	8.0–10.4 GHz	_	_	89
nanowire	in epoxy				(2-18 GHz)			
					-31.7 dB/			
SiC nanowires	35 wt% in	Tough	_	>1	7.1–9.7 GHz	-	-	90
	epoxy				(2-40 GHz)			
					-24 dB/			
BaCo _{0.5} Ti _{0.5} Fe ₁₁	50 wt% in	soft	_	>0.8	28.5–39.5 GHz	_	_	91
O ₁₉	wax				(26.5-40 GHz)			
BaFe ₁₁ Ti _{0.5} Co _{0.5}	80 wt% in				-29 dB/			
O ₁₉	in silicone	Tough	—	>1	27.3–38.4 GHz	_	_	92

	rubber				(26.5-40 GHz)			
$Ba_{0.95}La_{0.05}Fe_{12}O$ ₁₉ nanofibers	50 wt% in wax	soft	_	>0.8	-23.02 dB/ 2–14.6 GHz (2-18 GHz)	_	_	93
L-PANI/BF	50 wt% in wax	soft	_	>0.8	-30.1 dB/ 26.5–39.3 GHz (26.5–40 GHz)	_	_	94
BFO/NZFO	67wt% in wax	soft	_	>0.8	-27 dB/ 4.9–18 GHz (2-18 GHz)	_	_	95
Dendrite-like Fe	70 wt% in wax	soft	_	>0.8	-22.5 dB/ 3.6–18.0 GHz (2-18 GHz)	_	_	96
Fe ₃ O ₄ @TiO ₂	16.7wt% in epoxy	Tough	_	>1	-23.3 dB/ 2.6-18 GHz	_	_	97

[a] Density of typical matrices: wax: 0.8~0.9g/cm³; polymers: 0.9~2.0 0.8~0.9g/cm³(nitrile butadiene rubber (NBR):~1.0 g/cm³; poly(dimethyl siloxane) (PDMS): 1.04 g/cm³; epoxy:~1.1 g/cm³; polyvinylidenefluoride (PVDF):~1.8 g/cm³; poly(methyl methacrylate) (PMMA):~1.2 g/cm³; polyaniline (PANI): ~1.36 g/cm³; poly-(ethylene oxide) (PEO): ~1.2 g/cm³; Polystyrene (PS): ~1g/cm³; polyurethane (PU): ~1.2 g/cm³); Silica: 2.2g/cm³.

[b] The measurement was based on the arch method and the absorption performance was achieved directly from the measurement, rather than the calculation.

References

(1) Chen, T.; Deng, F.; Zhu, J.; Chen, C.; Sun, G.; Ma, S.; Yang, X., Hexagonal and cubic Ni nanocrystals grown on graphene: phase-controlled synthesis, characterization and their enhanced microwave absorption properties. *J. Mater. Chem.* **2012**, *22* (30), 15190-15197.

(2) Sun, X.; He, J.; Li, G.; Tang, J.; Wang, T.; Guo, Y.; Xue, H., Laminated magnetic graphene with enhanced electromagnetic wave absorption properties. *J. Mater. Chem. C* **2013**,*1* (4), 765-777.

(3) Fu, M.; Jiao, Q.; Zhao, Y., Preparation of NiFe₂O₄ nanorod-graphene composites via an ionic liquid assisted one-step hydrothermal approach and their microwave absorbing properties. *J. Mater. Chem. A* **2013**,*1* (18), 5577-5586.

(4) Ren, Y.; Zhu, C.; Zhang, S.; Li, C.; Chen, Y.; Gao, P.; Yang, P.; Ouyang, Q., Threedimensional SiO₂@ Fe₃O₄ core/shell nanorod array/graphene architecture: Synthesis and electromagnetic absorption properties. *Nanoscale* **2013**,*5* (24), 12296-12303.

(5) Lv, H.; Ji, G.; Liang, X.; Zhang, H.; Du, Y., A novel rod-like MnO₂@Fe loading on graphene giving excellent electromagnetic absorption properties. *J. Mate. Chem. C* 2015,3 (19), 5056-5064.

(6) Kong, L.; Yin, X.; Zhang, Y.; Yuan, X.; Li, Q.; Ye, F.; Cheng, L.; Zhang, L., Electromagnetic wave absorption properties of reduced graphene oxide modified by maghemite colloidal nanoparticle clusters. *J. Phys. Chem. C* **2013**,*117* (38), 19701-19711.

(7) Wang, L.; Huang, Y.; Li, C.; Chen, J.; Sun, X., Hierarchical graphene@ Fe₃O₄ nanocluster@ carbon@ MnO₂ nanosheet array composites: Synthesis and microwave absorption performance. *Phys. Chem. Chem. Phys.***2015**,*17* (8), 5878-5886.

(8) Wang, L.; Huang, Y.; Sun, X.; Huang, H.; Liu, P.; Zong, M.; Wang, Y., Synthesis and microwave absorption enhancement of graphene@ Fe₃O₄@ SiO₂@ NiO nanosheet hierarchical structures. *Nanoscale* **2014**,*6* (6), 3157-3164.

(9) Liu, P.B.; Huang, Y.; Sun, X., Excellent electromagnetic absorption properties of poly (3, 4-ethylenedioxythiophene)-reduced graphene oxide– Co_3O_4 composites prepared by a hydrothermal method. *ACS Appl. Mater. Interfaces***2013**,*5* (23), 12355-12360.

(10) Zhu, Z.; Sun, X.; Xue, H.; Guo, H.; Fan, X.; Pan, X.; He, J., Graphene-carbonyl iron cross-linked composites with excellent electromagnetic wave absorption properties. *J. Mater. Chem. C* **2014**,*2* (32), 6582-6591.

(11) Wang, L.; Huang, Y.; Li, C.; Chen, J.; Sun, X., Hierarchical composites of polyaniline nanorod arrays covalently-grafted on the surfaces of graphene@ Fe $_3$ O $_4$ @ C with high microwave absorption performance. *Composites Science and Technology* **2015**,*108*, 1-8.

(12) Liu, P.; Huang, Y.; Zhang, X., Superparamagnetic NiFe₂O₄ particles on poly (3, 4ethylenedioxythiophene)-graphene: Synthesis, characterization and their excellent microwave absorption properties. *Composites Science and Technology***2014**,*95*, 107-113.

(13) Wu, F.; Xia, Y.; Wang, Y.; Wang, M., Two-step reduction of self-assembed threedimensional (3D) reduced graphene oxide (RGO)/zinc oxide (ZnO) nanocomposites for electromagnetic absorption. *J. Mater. Chem. A* **2014**,*2* (47), 20307-20315.

(14) Zhang, L.; Yu, X.; Hu, H.; Li, Y.; Wu, M.; Wang, Z.; Li, G.; Sun, Z.; Chen, C., Facile synthesis of iron oxides/reduced graphene oxide composites: Application for electromagnetic wave absorption at high temperature. *Sci.Rep.***2015**,*5*, 9298.

(15) Liu, W.; Li, H.; Zeng, Q.; Duan, H.; Guo, Y.; Liu, X.; Sun, C.; Liu, H., Fabrication of ultralight three-dimensional graphene networks with strong electromagnetic wave absorption properties. *J. Mater. Chem. A* **2015**,*3* (7), 3739-3747.

(16) Wu, F.; Xie, A.; Sun, M.; Wang, Y.; Wang, M., Reduced graphene oxide (RGO) modified sponge-like polypyrrole (PPy) aerogel for excellent electromagnetic absorption. *J. Mater. Chem. A* **2015**, *3*, 14358-14369.

(17) Singh, V. K.; Shukla, A.; Patra, M. K.; Saini, L.; Jani, R. K.; Vadera, S. R.; Kumar, N., Microwave absorbing properties of a thermally reduced graphene oxide/nitrile butadiene rubber composite. *Carbon* **2012**,*50* (6), 2202-2208.

(18) Kong, L.; Yin, X.; Yuan, X.; Zhang, Y.; Liu, X.; Cheng, L.; Zhang, L., Electromagnetic wave absorption properties of graphene modified with carbon nanotube/poly (dimethyl siloxane) composites. *Carbon* **2014**,*73*, 185-193.

(19) Sun, D.; Zou, Q.; Wang, Y.; Wang, Y.; Jiang, W.; Li, F., Controllable synthesis of porous $Fe_3O_4@$ ZnO sphere decorated graphene for extraordinary electromagnetic wave absorption. *Nanoscale* **2014**,*6* (12), 6557-6562.

(20) Sun, D.; Zou, Q.; Qian, G.; Sun, C.; Jiang, W.; Li, F., Controlled synthesis of porous Fe₃O₄-decorated graphene with extraordinary electromagnetic wave absorption properties. *Acta Mater*.2013,61 (15), 5829-5834.

(21) Zhang, X.J.; Wang, G.S.; Cao, W.Q.; Wei, Y.Z.; Liang, J.F.; Guo, L.; Cao, M.S., Enhanced microwave absorption property of reduced graphene oxide (RGO)-MnFe₂O₄ nanocomposites and polyvinylidene fluoride. *ACS Appl. Mater. Interfaces* **2014**,*6* (10), 7471-7478.

(22) Cao, W.Q.; Wang, X.X.; Yuan, J.; Wang, W.Z.; Cao, M.S., Temperature dependent microwave absorption of ultrathin graphene composites. *J. Mater. Chem. C* **2015**,*3* (38), 10017-10022.

(23) Bai, X.; Zhai, Y.; Zhang, Y., Green approach to prepare graphene-based composites with high microwave absorption capacity. *J. Phys. Chem. C* 2011,*115* (23), 11673-11677.
(24) Zhang, Y.; Huang, Y.; Zhang, T.; Chang, H.; Xiao, P.; Chen, H.; Huang, Z.; Chen, Y., Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. *Adv. Mater.* 2015,*27* (12), 2049-2053.

(25) Wang, G.; Gao, Z.; Tang, S.; Chen, C.; Duan, F.; Zhao, S.; Lin, S.; Feng, Y.; Zhou, L.; Qin, Y., Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. *ACS Nano* **2012**,*6* (12), 11009-11017.

(26) Song, W.L.; Cao, M.S.; Fan, L.Z.; Lu, M.M.; Li, Y.; Wang, C.Y.; Ju, H.F., Highly ordered porous carbon/wax composites for effective electromagnetic attenuation and shielding. *Carbon* **2014**,*77*, 130-142.

(27) Liu, Q.L.; Zhang, D.; Fan, T.X., Electromagnetic wave absorptionproperties of porous carbon/Co nanocomposites. *Appl. Phys. Lett.* **2008**,*93* (1), 013110.

(28) Zhang, X.F.; Dong, X.L.; Huang, H.; Liu, Y.Y.; Wang, W.N.; Zhu, X.G. Lv, B.; Lei, J.P.; Lee, C. G., Microwave absorption properties of the carbon-coatednickel nanocapsules. *Appl. Phys. Lett.* **2006**,*89* (5), 053115.

(29) Liu; Z.F.; Bai, G.; Huang, Y.; Li, F.F.; Ma, Y.F.; Guo, T.Y.; He, X.B.; Lin, X.; Gao, H.J.; Chen, Y.S., Microwave absorption of single-walled carbon nanotubes/soluble cross linked polyurethane composites. *J. Phys. Chem. C* **2007**,*111* (37), 13696-13700.

(30) Che, R.C.; Peng, L.M.; Duan, X.F.; Chen, Q.; Liang, X.L., Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. *Adv. Mater.* **2004**,*16* (5), 401-405.

(31) Wen, F.S.; Zhang, F.; Liu, Z.Y., Investigation on microwaveabsorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nanopowders as lightweight absorbers. *J. Phys. Chem. C* 2011,*115* (29), 14025-14030.

(32) Qing, Y.; Zhou, W.; Luo, F.; Zhu, D., Epoxy-silicone filled with multi-walled carbon nanotubes and carbonyl iron particles as a microwave absorber. *Carbon* 2010,48 (14), 4074-4080.

(33) Yu, L.; Li, B.; Sheng, L.; An, K.; Zhao, X., The microwave absorbing properties of SmCo attached single wall carbon nanotube/epoxy composites. *J. Alloys Compd.* 2013,575, 123-127.

(34) Zhang, D.; Yang, X.; Cheng, J.; Lu, M.; Zhao, B.; Cao, M., *J. Nanomater.* 2013, 2013, 1.
(35) Liu, X.G.; Ou, Z.Q.; Geng, D.Y.; Han, Z.; Jiang, J.J.; Liu, W.; Zhang, Z.D., Influence of a graphite shell on the thermal and electromagnetic characteristics of FeNi nanoparticles. *Carbon* 2010,48 (3), 891-897.

(36) Ren, Y.L.; Wu, H.Y.; Lu, M.M.; Chen, Y.J.; Zhu, C.L.; Gao, P.; Cao, M.S.; Li, C.Y.;
Ouyang, Q.Y., Quaternary nanocomposites consisting of graphene, Fe₃O₄@Fe core@shell,
and ZnO nanoparticles: Synthesis and excellent electromagnetic absorption properties. *ACS Appl. Mater. Interfaces* 2012,4 (12), 6436-6442.

(37) Liu, X.G.; Li, B.; Geng, D.Y.; Cui, W.B.; Yang, F.; Xie, Z.G.; Kang, D.J.; Zhang, Z.D.,
(Fe, Ni)/C nanocapsules for electromagnetic-wave-absorber in the whole Ku-band. *Carbon* **2009**,47 (2), 470-474.

(38) Zhou, H.; Wang, J.; Zhuang, J.; Liu, Q., A covalent route for efficient surface modification of ordered mesoporous carbon as high performance microwave absorbers. *Nanoscale* **2013**,*5* (24), 12502-12511.

(39) Pan, G.; Zhu, J.; Ma, S.; Sun, G.; Yang, X., Enhancing the electromagnetic performance of Co through the phase-controlled synthesis of hexagonal and cubic Co nanocrystals grown on graphene. *ACS Appl. Mater. Interfaces* **2013**,*5* (23), 12716-12724.

(40) Sun, H.; Che, R.; You, X.; Jiang, Y.; Yang, Z.; Deng, J.; Qiu, L.; Peng, H., Crossstacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. *Adv. Mater.* **2014**,*26* (48), 8120-8125.

(41) Liu, Y.; Yin, X.; Kong, L.; Liu, X.; Ye, F.; Zhang, L.; Cheng, L., Electromagnetic properties of SiO₂ reinforced with both multi-wall carbon nanotubes and ZnO particles. *Carbon* **2013**,*64*, 541-544.

(42) Liu, L.; He, P.; Zhou, K.; Chen, T., Microwave absorption properties of carbon fibers with carbon coils of different morphologies (double microcoils and single nanocoils) grown on them. *J. Mater. Sci.* **2014**,*49* (12), 4379-4386.

(43) Liu, L.; He, P.; Zhou, K.; Chen, T., Microwave absorption properties of helical carbon nanofibers-coated carbon fibers. *AIP Adv.* **2013**,*3* (8), 082112.

(44) Qing, Y.C.; Zhou, W.C.; Jia, S.; Luo, F.; Zhu, D.M., Electromagnetic and microwave absorption properties of carbonyl iron and carbon fiber filled epoxy/silicone resin coatings. *Appl. Phys. A* **2010**,*100* (4), 1177-1181.

(45) Wang, T.; Wang, H.; Chi, X.; Li, R.; Wang, J., Synthesis and microwave absorption properties of Fe-C nanofibers by electrospinning with disperse Fe nanoparticles parceled by carbon. *Carbon* **2014**,*74*, 312-318.

(46) Chen, Y.J.; Xiao, G.; Wang, T.S.; Ouyang, Q.Y.; Qi, L.H.; Ma, Y.; Gao, P.; Zhu, C.L.;

Cao, M.S.; Jin, H.B., Porous Fe₃O₄/carbon core/shell nanorods: Synthesis and electromagnetic properties. *J. Phys. Chem. C* **2011**,*115* (28), 13603-13608.

(47) Jiang, J.; Li, D.; Geng, D.; An, J.; He, J.; Liu, W.; Zhang, Z., Microwave absorption properties of core double-shell FeCo/C/BaTiO₃ nanocomposites. *Nanoscale* 2014,6 (8), 3967-3971.

(48) Zou, T.; Zhao, N.; Shi, C.; Li, J., Microwave absorbing properties of activated carbon fibre polymer composites. *Bull. Mater. Sci.* **2011**,*34* (1), 75-79.

(49) Zou, T.; Shi, C.; Zhao, N., Microwave absorbing properties of activated carbon-fiber felt dipole array/epoxy resin composites. *J. Mater. Sci.* **2007**,*42* (13), 4870-4876.

(50) Liu, J.R.; Itoh, M.; Horikawa, T.; Taguchi, E.; Mori, H.; Machida, K., Iron based carbon nanocomposites for electromagnetic wave absorber with wide bandwidth in GHz range. *Appl. Phys. A* **2005**,*82* (3), 509-513.

(51) Ge, C.J.; Zou, J.P.; Yan, M.Q.; Bi, H., C-dots induced microwave absorption enhancement of PANI/ferrocene/C-dots. *Materials Letters* **2014**,*137*, 41-44.

(52) Liu, C.Y.; Xu, Y.J.; Wu, L.N.; Jiang, Z.H.; Shen, B.Z.; Wang, Z.J., Fabrication of coremultishell MWCNT/Fe₃O₄/PANI/Au hybrid nanotubes with high-performance electromagnetic absorption. *J. Mater. Chem. A* **2015**,*3* (19), 10566-10572. (53) Li, L.; Chen, K.; Liu, H.; Tong, G.; Qian, H.; Hao, B., Attractive microwave-absorbing properties of M-BaFe₁₂O₁₉ ferrite. *J. Alloys Compd.* **2013**,*557*, 11-17.

(54) Wei, X.J.; Jiang, J.T.; Zhen, L.; Gong, Y.X.; Shao, W.Z.; Xu, C.Y., Synthesis of Fe/SiO₂ composite particles and their superior electromagnetic properties in microwave band. *Mater*. *Lett.* **2010**,*64* (1), 57-60.

(55) Ting, T.H.; Yu, R.P.; Jau, Y.N., Synthesis and microwave absorption characteristics of polyaniline/NiZn ferrite composites in 2-40GHz. *Mater. Chem. Phys.* 2011,126 (1), 364-368.
(56) Chen, Y.J.; Zhang, F.; Zhao, G.G.; Fang, X.Y.; Jin, H.B.; Gao, P.; Zhu, C.L.; Cao, M.S.; Xiao, G., Synthesis, multi-nonlinear dielectric resonance, and excellent electromagnetic absorption characteristics of Fe₃O₄/ZnO core/shell nanorods. *J. Phys. Chem. C* 2010,114 (20), 9239-9244.

(57) Fan, X.A.; Guan, J.; Li, Z.; Mou, F.; Tong, G.; Wang, W., One-pot low temperature solution synthesis, magnetic and microwave electromagnetic properties of single-crystal iron submicron cubes. *J. Mater. Chem.* **2010**,*20* (9), 1676-1682.

(58) Du, L.; Du, Y.; Li, Y.; Wang, J.; Wang, C.; Wang, X.; Xu, P.; Han, X., Surfactantassisted solvothermal synthesis of Ba(CoTi)_xFe1₂- 2xO₁₉ nanoparticles and enhancement in microwave absorption properties of polyaniline. *J. Phys. Chem. C* **2010**,*114* (46), 19600-19606.

(59) Sakai, K.; Asano, N.; Wada, Y.; Yoshikado, S., Composite electromagnetic wave absorber made of soft magnetic material and polystyrene resin and control of permeability and permittivity. *J. Eur. Ceram. Soc.* **2010**,*30* (2), 347-353.

(60) Belaabed, B.; Wojkiewicz, J.L.; Lamouri, S.; Kamchi, N.E.; Lasri, T., Synthesis and characterization of hybrid conducting composites based on polyaniline/magnetite fillers with improved microwave absorption properties. *J. Alloys Compd.* **2012**,*527*, 137-144.

(61) Zhou, W.; Hu, X.; Bai, X.; Zhou, S.; Sun, C.; Yan, J.; Chen, P., Synthesis and electromagnetic, microwave absorbing properties of core-shell Fe₃O₄-poly (3, 4-ethylenedioxythiophene) microspheres. *ACS Appl. Mater. Interfaces* 2011,*3* (10), 3839-3845.
(62) Peng, C.H.; Chen, P.S.; Chang, C.C., High-temperature microwave bilayer absorber based on lithium aluminum silicate/lithium aluminum silicate-SiC composite. *Ceramics International* 2014,*40* (1): 47-55.

(63) Wang, W.; Guo, J.X.; Long, C.; Li, W.; Guan, J.G., Flaky carbonyl iron particles with both small grain size and low internal strain for broadband microwave absorption. *J. Alloys Compd.* **2015**,*637*, 106-111.

(64)Sun, N.K.; Du, B.S.; Liu, F.; Si, P.Z.; Zhao, M.X.; Zhang, X.Y.; Shi, G.M., Influence of annealing on the microwave-absorption properties of Ni/TiO₂ nanocomposites. *J. Alloys Compd.* **2013**,*577*, 533-537.

(65) Wu, X.B.; Luo, G.L.; Wan, Y.Z., Preparation of SnO₂-coated carbonyl iron flaky composites with enhanced microwave absorption properties. *Materials Letters* 2013,92, 139-142.

(66) Fu, L.S.; Jiang, J.T.; Xu, C.Y.; Zhen, L., Synthesis of hexagonal Fe microflakes with excellent microwave absorption performance. *Crystengcomm.* 2012,14 (20), 6827-6832.
(67) Li, J.; Feng, W.J.; Wang, J.S.; Zhao, X.; Zheng, W.Q.; Yang, H., Impact of silica-coating on the microwave absorption properties of carbonyl iron powder. *J. Magn. Magn.Mater.* 2015,393, 82-87.

(68) Xia, T.; Zhang, C.; Oyler, N.A.; Chen, X., Hydrogenated TiO₂ nanocrystals: A novel microwave absorbing material. *Adv. Mater.* **2013**,*25* (47), 6905-6910.

(69) Liu, Y.; Luo, F.; Su, J.B.; Zhou, W.C.; Zhu, D.M., Electromagnetic and microwave absorption properties of the Nickel/Ti₃SiC₂ hybrid powders in X-band. *J. Magn. Magn. Mater.* **2014**,*365*, 126-131.

(70) Yan, X.; Xue, D., Fabrication and microwave absorption properties of Fe_{0.64}Ni_{0.36}-NiFe₂O₄ nanocomposite. *Nano-Micro. Lett.* **2012**.*4* (3), 176-179.

(71) Jacobo, S.E.; Bercoff, P.G.; Herme, C.A.; Vives, L.A., Sr hexaferrite/Ni ferrite nanocomposites: Magnetic behavior and microwave absorbing properties in the X-band. *Materials Chemistry and Physics* **2015**,*157*, 124-129.

(72) Zhao, B.; Shao, G.; Fan, B.B.; Guo, W.H.; Chen, Y.Q.; Zhang, R., Preparation of SnO₂coated Ni microsphere composites with controlled microwave absorption properties. *Applied Surface Science* **2015**,*332*, 112-120.

(73) Li, Y.; Cao, W.Q.; Yuan, J.; Wang, D.W.; Cao, M.S., Nd doping of bismuth ferrite to tune electromagnetic properties and increase microwave absorption by magnetic-dielectric synergy. *J. Mater. Chem. C* **2015**,*3* (36), 9276-9282.

(74) Liu, J.; Cheng, J.; Che, R.; Xu, J.; Liu, M.; Liu, Z., Synthesis and microwave absorption properties of yolk-shell microspheres with magnetic iron oxide cores and hierarchical copper silicate shells. *ACS Appl. Mater. Interfaces* **2013**,*5* (7), 2503-2509.

(75) Ma, R.T.; Zhao, H.T.; Zhang, G., Preparation, characterization and microwave absorption properties of polyaniline/Co_{0.5}Zn_{0.5}Fe₂O₄ nanocomposite. *Mater. Res. Bull.* **2010**,45 (9), 1064-1068.

(76) Guo, J.; Wang, X.; Liao, X.; Zhang, W.; Shi, B., Skin collagen fiber-biotemplated synthesis of size-tunable silver nanoparticle-embedded hierarchical intertextures with lightweight and highly efficient microwave absorption properties. *J. Phys. Chem. C* 2012,*116* (14), 8188-8195.

(77) Kang, Y.Q.; Cao, M.S.; Yuan, J.; Zhang, L.; Wen, B.; Fang, X.Y., Preparation and microwave absorption properties of basalt fiber/nickel core-shell heterostructures. *J. Alloys Compd.* **2010**,*495* (1), 254-259.

(78) Yang, H.; Cao, M.; Li, Y.; Shi, H.; Hou, Z.; Fang, X.; Jin, H.; Wang, W.; Yuan, J., Enhanced dielectric properties and excellent microwave absorption of SiC powders driven with NiO nanorings. *Adv. Opt. Mater.* **2014**,*2* (3), 214-219.

(79) Zhu, W.; Wang, L.; Zhao, R.; Ren, J.; Lu, G.; Wang, Y., Electromagnetic and microwave-absorbing properties of magnetic nickel ferrite nanocrystals. *Nanoscale* 2011,3 (7), 2862-2864.

(80) Li, W.; Qiu, T.; Wang, L.; Ren, S.; Zhang, J.; He, L.; Li, X., Preparation and electromagnetic properties of core/shell polystyrene@polypyrrole@nickel composite microspheres. *ACS Appl. Mater. Interfaces* **2013**,*5* (3), 883-891.

(81) Cao, M.; Lian, H.; Hu, C., Ligand-assisted fabrication of hollow CdSe nanospheres via Ostwald ripening and their microwave absorption properties. *Nanoscale* **2010**,*2* (12), 2619-2623.

(82) Zhao, P.; Liang, C.; Gong, X.; Gao, R.; Liu, J.; Wang, M.; Che, R., Microwave absorption enhancement, magnetic coupling and ab initio electronic structure of monodispersed (Mn_{1- x}Co_x)₃O₄ nanoparticles. *Nanoscale* **2013**,*5* (17), 8022-8028.

(83) Xia, F.; Liu, J.; Gu, D.; Zhao, P.; Zhang, J.; Che, R., Microwave absorption enhancement and electron microscopy characterization of BaTiO₃ nano-torus. *Nanoscale* 2011,*3* (9), 3860-3867.

(84) Chen, Y.J.; Gao, P.; Wang, R.X.; Zhu, C.L.; Wang, L.J.; Cao, M.S.; Jin, H.B., Porous Fe₃O₄/SnO₂ core/shell nanorods: Synthesis and electromagnetic properties. *J. Phys. Chem. C* 2009,*113* (23), 10061-10064.

(85) Yang, C.C.; Gung, Y.J.; Shih, C.C.; Hung, W.C.; Wu, K.H., Synthesis, infrared and microwave absorbing properties of (BaFe₁₂O₁₉+BaTiO₃)/polyaniline composite. *J. Magn. Magn. Mater.* **2011**,*323* (7), 933-938.

(86) An, Z.; Pan, S.; Zhang, J., Combined theoretical modeling of photoexcitation spectrum of an isolated protonated tyrosine. *J. Phys. Chem. C* **2009**,*113* (12), 2715 -2723.

(87) Gong, C.; Zhang, J.; Yan, C.; Cheng, X.; Zhang, J.; Yu, L.; Jin, Z.; Zhang, Z., Synthesis, optical and structural properties of sanidic liquid crystal (cholesteryl) benzoate-ethynylene oligomers and polymer. *J. Mater. Chem.* **2012**,*22* (9), 3370-3380.

(88) Zhu, Y.F.; Zhang, L.; Natsuki, T.; Fu, Y.Q.; Ni, Q.Q., Facile synthesis of BaTiO₃
nanotubes and their microwave absorption properties. *ACS Appl. Mater. Interfaces* 2012,4 (4), 2101-2106.

(89) Yang, J.; Zhang, J.; Liang, C.; Wang, M.; Zhao, P.; Liu, M.; Liu, J.; Che, R., Ultrathin BaTiO₃ nanowires with high aspect ratio: A simple one-step hydrothermal synthesis and their strong microwave absorption. *ACS Appl. Mater. Interfaces* **2013**,*5* (15), 7146-7151.

(90) Chiu, S.C.; Yu, H.C.; Li, Y.Y., High electromagnetic wave absorption performance of silicon carbide nanowires in the gigahertz range. *J. Phys. Chem. C* 2010,*114* (4), 1947-1952.
(91) Dong, C.; Wang, X.; Zhou, P.; Liu, T.; Xie, J.; Deng, L., Microwave magnetic and absorption properties of M-type ferrite BaCo_xTi_xFe_{12-2x}O₁₉ in the Ka band. *J. Magn. Magn. Mater.* 2014,*354*, 340-344.

(92) Kim, Y.J.; Kim, S.S., Magnetic and microwave absorbing properties of Ti and Co substituted M-hexaferrites in Ka-band frequencies (26.5~40 GHz). *J. Electroceram.* 2010,24 (4), 314-318.

(93) Li, C.J.; Wang, B.; Wang, J.N., Magnetic and microwave absorbing properties of electrospun Ba_(1-x)La_xFe₁₂O₁₉ nanofibers. *J. Magn. Magn. Mater.* 2012,*324* (7), 1305-1311.
(94) Xu, F.; Ma, L.; Gan, M.; Tang, J.; Li, Z.; Zheng, J.; Zhang, J.; Xie, S.; Yin, H.; Shen, X.; Hu, J.; Zhang, F., Preparation and characterization of chiral polyaniline/barium hexaferrite composite with enhanced microwave absorbing properties. *J. Alloys Compd.* 2014,*593*, 24-29.
(95) Shen, X.; Song, F.; Xiang, J.; Liu, M.; Zhu, Y.; Wang, Y.; Joy, P., Shape Anisotropy, Exchange-coupling interaction and microwave absorption of hard/soft nanocomposite ferrite microfibers. *J. Am. Ceram. Soc.* 2012,*95* (12), 3863-3870.

(96) Sun, G.; Dong, B.; Cao, M.; Wei, B.; Hu, C., Hierarchical dendrite-like magnetic materials of Fe₃O₄, γ-Fe₂O₃, and Fe with high performance of microwave absorption. *Chem. Mater.* 2011,23 (6), 1587-1593.

(97) Liu, J.; Che, R.; Chen, H.; Zhang, F.; Xia, F.; Wu, Q.; Wang, M., Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe₃O₄ cores and anatase TiO₂ shells. *Small* **2012**,*8* (8), 1214-1221.

(98) Liu, J.; Xu, J.; Che, R.; Chen, H.; Liu, Z.; Xia, F., Hierarchical magnetic yolk-shell microspheres with mixed barium silicate and barium titanium oxide shells for microwave absorption enhancement. *J. Mater. Chem.* **2012**,*22* (18), 9277-9284.

(99) Lee, C.C.; Cheng, Y.Y.; Chang, H.Y.; Chen, D.H., Synthesis and electromagnetic wave absorption property of Ni-Ag alloy nanoparticles. *J. Alloys Compd.* **2009**,*480* (2), 674-680.

(100) Li, W.; Wu, T.; Wang, W.; Zhai, P.; Guan, J., Broadband patterned magnetic microwave absorber. *J. Appl. Phys.* **2014**,*116* (4), 044110.