Perturbation of epigenetic processes by doxorubicin in the mouse testis

Oluwajoba O Akinjo, Timothy W Gant and Emma L Marczylo

Contents:	Pages:
Supplementary Figure 1	2
Supplementary Figure 2	3
Supplementary Table 1	4
Supplementary Table 2	5
Supplementary Table 3	6

Testicular sections were examined using two different fixatives (Bouin's and Zenker's), each with two different staining techniques (H&E and PAS) to ensure that all relevant cell types could be clearly identified and counted. H&E is a routine staining technique primarily used in histopathology to evaluate morphology, whilst PAS is a staining technique used to detect glycoproteins, which are present in acrosomes during the formation of spermatozoa from round spermatids. In H&E stained sections, the nuclear details of the different cells within the testis were more clearly defined in Bouin's-fixed testis compared to Zenker's-fixed testis (Supplementary Figure 1A-B). In PAS stained sections, the germ cells within the seminiferous tubules were more clearly stained in Zenker's-fixed testis compared to Bouin's-fixed testis (Supplementary Figure 1C-D). In particular, the contrast between elongated spermatids (dark purple) and other germ cells was more pronounced in Zenker's-fixed testis. Thus, Bouin's-fixed H&E stained sections were used for identifying the different testicular cell types, whilst Zenker's-fixed PAS stained sections were used for identifying and counting the germ cells at different stages of spermatogenesis.

Supplementary Figure 1 Testicular histopathology A) H&E staining following fixation in Bouin's solution, B) H&E staining following fixation in Zenker's solution, C) PAS staining following fixation in Bouin's solution and D) PAS staining following fixation in Zenker's solution. Images are representative of control animals only.

Supplementary Figure 2 Chromosomal location of (A) the top 139 significantly DMRs in control animals ($p \le 0.001$), and (B) the top 126 significantly DMRs over time following treatment with DOX ($p \le 0.001$).

B

Transcript	Forward primer (3'-5')	Reverse primer (3'-5')			
Bcl2	GTCGCTACCGTCGTGACTTC	GACCCCACCGAACTCAAAGAA			
Casp3	GCACTGGAATGTCATCTCGCT	GGCCCATGAATGTCTCTCTGAG			
Casp6	AAAAGTAGGGAAGTGTTCGATCC	CGAGTCAGGTTGTCTCTGTCTG			
Catsper1	TTCAAGGAGGGACGAGTCTTAC	ATGGCTTGGGTCTAAGCTACC			
Catsper3	CCTGGGATTCTGCCTATTTGG	AAGCCAGGTTCCCCCAGTT			
Crem	ATGTCTTGAAAATCGTGTGGCT	TGGCAATAAAGGTCTTTGAGGG			
Ctsb	TTGCGTTCGGTGAGGACATAG	TCCCGTGCATCAAAGGTTTCA			
Ctsd	GCTTCCGGTCTTTGACAACCT	CACCAAGCATTAGTTCTCCTCC			
Ctss	AGTGGGCATGAACGATATGGG	GTCAGGCAATGTCCGATTAGAG			
Ctsw	CCTGGCTTCGTCCTCCTTC	GGCGATGACTGCATGGAGT			
Cyp17a1	GCCCAAGTCAAAGACACCTAAT	GTACCCAGGCGAAGAGAATAGA			
Dnmt1	TTCATGATGTGAAAAATGGCTACA	CCTTGCCTTCTGCACAGGAA			
Dnmt3a	TTGTTGAGTCTAACCCCGTGATG	ATCATTCACAGTGGATGCCAAA			
Dnmt3b	CCCGTTCGACTTGGTGATTG	CTTCCTGTGCCCTCATATAAACCT			
Dnmt31	GCTCTAAGACCCTTGAAACCCTTG	GTCGGTTCACTTTGACTTCGTA			
Gapdh	CGTGTTCCTACCCCCAATGT	TGTCATCATACTTGGCAGGTTTC			
Gstm3	AAGCACAACCTGTGTGGAGAGA	GCAGCAGACTATCATGAGCTGT			
Hspa1a	TGGTGCAGTCCGACATGAAC	GCTGAGAGTCGTTGAAGTAGGC			
Hspa2	TGAACCCCACAAACACCATCT	CGAACTTCCGTCCGATCAGC			
Insl3	CATGCGCGCGCCGCTGCTAC	TCAGTGGGGACACAGACCC			
Nme5	AAAACCCTAGCCCTTATCAAGC	AGGTGTAGTTTCCGTCTCTGAA			
Stra8	GCCGGACCTCATGGAATTTGA	TCACTTCATGTGCAGAGATGATG			
Tcf21	CCAACGACAAGTACGAGAACG	TCAGGTTGACTGGGTGAATGT			
Tnp2	GGGAAAGTGAGCAAGAGAAG	ACTTGTATCTTCGCCCTGAGCT			

Supplementary Table 1 Primer sequences used for qRT-PCR

		Time post DOX			Time post DOX		
Role	Transcript/miRNA	exposure			exposure		
		1wk	4wk	7wk	1wk	4wk	7wk
	Catsper1	-4.2	-8.3	-5.0	-0.4	-1.7	-0.2
	Catsper3	-5.0	-6.7	-4.7	-0.4	-1.1	-0.4
	Crem	-1.7	-2.1	-1.5	-0.4	-0.5	-0.3
	Hspa2	-4.9	-4.8	-3.3	-1.3	-2.5	-0.6
function	Nme5	-3.5	-5.7	-3.6	-0.4	-1.6	-0.5
Tunetion	Stra8	-5.9	-5.5	-2.3	-0.4	-0.7	-0.3
	Tnp2	0.3	-5.8	-3.9	0.0	-3.8	-1.5
	Cyp17a1	1.0	0.8	0.9	0.4	0.8	0.6
	Insl3	2.1	2.4	2.1	0.7	2.6	1.3
	Bcl2	-0.2	1.2	1.5	0.0	0.6	0.7
	Casp3	0.6	1.5	1.4	0.3	0.5	0.7
	Casp6	1.0	1.4	0.6	0.3	0.8	0.4
Q. (11	Ctsb	0.7	2.0	1.5	0.5	2.2	0.3
Stress/cell	Ctsd	0.7	1.4	2.0	0.3	0.3	0.4
survival	Ctss	1.3	2.2	2.7	0.4	1.9	0.4
Survivar	Ctsw	0.7	1.0	1.7	0.5	0.5	0.4
	Gstm3	1.3	1.9	3.5	0.7	1.7	0.8
	Tcf21	2.1	2.6	1.7	0.6	1.8	0.4
	Hspala	-4.8	-5.3	-2.7	-0.6	0.0	-0.5
	Dnmtl	-0.5	-1.3	0.3	-0.5	-0.3	0.0
	Dnmt3a	-3.4	-3.0	-1.2	-0.3	-0.8	-0.6
DIA	Dnmt3b	-1.6	-1.6	-0.8	-0.3	-0.4	-0.6
DNA methylation and apoptosis	Dnmt3l	-5.2	-6.4	-3.5	-0.3	-0.4	-0.1
	miR-26a	0.1	1.8	1.3	0.1	1.1	1.0
	miR-29a	0.5	1.3	0.0	0.5	0.8	0.3
	miR-29b	0.5	1.6	0.6	0.6	1.0	0.5
	miR-29c	0.0	1.7	0.4	0.1	1.0	0.6
	miR-145	0.1	1.8	1.6	0.1	1.1	0.9
Method		qRT-PCR data			Array data		

Supplementary Table 2 qRT-PCR and array data of mRNAs and miRNAs of interest

mRNAs/miRNAs were selected due to either significant differential expression at more than one time point ($p \le 0.001$) and from literature searches identifying their role in male infertility and tissue atrophy, and classified into groups based on their biological and physiological roles. Values represent mean Log₂[DOX/Control] (n \ge 3).

Gene/Transcript	Time post DOX exposure		Time post DOX exposure			
	1wk	4wk	7wk	1wk	4wk	7wk
Hook1	-2.1	0.9	1.1	0.2	-0.6	-0.3
Spag16	-2.5	0.1	0.9	0.0	-0.3	-0.3
Stam	-1.6	1.3	1.4	0.2	-0.3	-0.3
Profile	DNA methylation			Transcription		

Supplementary Table 2 Correlation of DNA methylation and transcriptional profiles

ProtuleDNA methylationTranscriptionThe 99 top most significantly DMRs associated with known genes were compared with thetop 96 most significantly differentially expressed mRNAs ($p \le 0.001$) to identify those withinverse correlations over time. Values for DNA methylation data represent mean Peak scoreratio (Peak score DOX – Peak score control) ($n \ge 3$), and values for transcription datarepresent mean Log₂[DOX/Control] ($n \ge 3$). Decreased DNA methylation/mRNA expressionis shown in green and increased DNA methylation/mRNA expression in red.