Protection of baicalin on lipopolysaccharide induced liver and kidney

injury based on ¹H NMR metabolomic profiling

Shanting Liao^{a,1}, Pei Li^{a,1}, Junsong Wang^b*, Qian Zhang^a, Dingqiao Xu^a, Minghua Yang^a, Lingyi

Kong^a*

^a State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China. Fax/Tel: 86-25-8327-1405; E-mail: cpu_lykong@126.com

^b Center for Molecular Metabolism, Nanjing University of Science & Technology, 200 Xiao Ling Wei Street, Nanjing 210094, PR China. Tel: 86-25-8431-5512; E-mail: wang.junsong@gmail.com

*To whom correspondence should be address.

Tel/Fax: +86 25 8327 1405. (Lingyi Kong); Tel: +86 25 8431 5512. (Junsong Wang)

E-mail: cpu_lykong@126.com (Lingyi Kong); wang.junsong@gmail.com (Junsong Wang)

¹ These authors contributed equally to this work

Table S1 The sequences of primers used for real-time PCR assays

Genes	Forward primer (5'-3')	Reverse primer (5'-3')
GAPDH	CGACTTCAACAGCAACTC	GTAGCCGTATTCATTGTCAT
TNF-α	GACAGTGACCTGGACTGTGG	GAGACAGAGGCAACCTGACC
IL-1β	TGCCACCTTTTGACAGTGATG	ATGTGCTGCTGCGAGATTTG
IL-10	TAAGGCTGGCCACACTTGAG	TGAGCTGCTGCAGGAATGAT
IL-6	CAGAAGGAGTGGCTAAGGACC	AACGCACTAGGTTTGCCGA
РК	CCGAGATACGCACTGGAGTC	GTGGTAGTCCACCCACACTG
CS	TGGTCCCAGGATACGGTCAT	TTGTACAGCTGAGCCACCAG

 $GAPDH: glyceraldehyde-3-phosphate dehydrogenase; TNF-\alpha: Tumor Necrosis Factor-\alpha; IL-1\beta: interleukin-1\beta; IL-10: i$

10; IL-6: interleukin-6; PK: pyruvate kinase; CS: citrate synthase.

No.	Metabolite	Assignments	Chemical shift (ppm)
1	LDL/VLDL	CH_2	0.89 (m), 1.20-1.30 (m)
2	3-hydroxybutyrate	γCH_3 , βCH	1.26 (d), 4.21 (m)
3	lactate	CH ₃ , CH	1.33 (d), 4.12 (q)
4	alanine	βCH ₃ , αCH	1.49 (d), 3.78 (q)
5	acetate	CH ₃	1.92 (s)
6	N-acetylglucosamine	CH ₃	2.04 (d)
7	N-acetylglycoprotein	CH ₃	2.09 (s)
8	O-acetylglycoprotein	OHCHCH ₃	2.19 (s)
9	2-OG	CH_2	2.45 (t), 3.02 (t)
10	pyruate	βCH ₃	2.46 (s)
11	citrate	1/2CH ₂ , 1/2CH ₂	2.55 (d), 2.66 (d)
12	NADPH	CH_2	2.80 (dt)
13	creatinine	N-CH ₃ , N-CH ₂ -CO	3.05 (s), 4.05 (s)
14	taurine	NH ₂ -CH ₂ , SO ₃ -CH ₂	3.25 (t), 3.43 (t)
15	betaine	N(CH ₃) ₃ , CH ₂	3.25 (s), 3.89(s)
16	TMAO	CH ₃	3.27 (s)
17	acetoacetate	CH ₃	2.30 (s), 3.42 (s)
18	glucose	CH, CH ₂	3.20-3.90

Table S2 ¹H NMR assignment of metabolites in serum of NC, LPS and Bai mice

s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; dd, doublet of doublets, dt, doublet of triplets.

No.	Metabolite	Assignments	Chemical shift (ppm)
1	LDL/VLDL	CH_2	0.89 (m),1.20-1.30 (m)
2	3-hydroxybutyrate	$\gamma CH_3, \beta CH$	1.20 (d), 4.13 (m)
3	isoleucine	δCH3, γCH3, αCH	0.93 (t), 0.99 (d), 2.65 (d)
4	leucine	δCH3, δCH3, γCH, αCH	0.97 (dd), 1.70 (m), 3.73 (t)
5	valine	γCH ₃ , γCH ₃	0.99 (d),1.05 (d), 2.26 (m), 3.60 (d)
6	lactate	CH ₃ , CH	1.33 (d), 4.12 (q)
7	alanine	βCH3, αCH	1.49 (d), 3.78 (q)
8	acetate	CH ₃	1.92 (s)
9	acetoacetate	CH ₃	2.31 (s)
10	NADPH	CH_2	2.80 (dt)
11	creatine	CH ₂ , CH ₃	3.04 (s), 3.93 (s)
12	creatinine	N-CH ₃ , N-CH ₂ -CO	3.05 (s), 4.05 (s)
13	choline	N(CH ₃) ₃ , N-CH ₂	3.19 (s),4.1 (d)
14	phosphocholine	N-CH ₂	3.21 (s)
15	betaine	N(CH ₃) ₃ , CH ₂	3.25 (s), 3.88 (s)
16	taurine	NH ₂ -CH ₂ , SO ₃ -CH ₂	3.27 (t),3.43 (t)
17	TMAO	CH ₃	3.27 (s)
18	glucose	CH, CH ₂	3.20-3.90
19	uridine	H ₅ , H ₆ , H ₁ '	5.9 (d), 7.9 (d)
20	tyrosine	H ₃ /H ₅ , C ₅ H/C ₆ H	3.04 (m), 6.90 (d),7.20 (d)
21	phenylalanine	CH=CH, CH ₂ , CH-NH ₂	3.13 (m), 3.28 (m), 4.00 (m), 7.33 (m) 7.38(m) 7.43(m)
22	adenosine	CH-OH, N=CH-N	8.25 (s), 8.34 (s)
23	inosine	O-CH-N, N-CH=N CH=N	6.10 (d), 8.23 (s), 8.34 (s)

Table S3 $^1\mathrm{H}$ NMR assignment of metabolites in liver of NC, LPS and Bai mice

s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; dd, doublet of doublets, dt, doublet of triplets.

No.	Metabolite	Assignments	Chemical shift (ppm)
1	LDL/VLDL	CH_2	0.89 (m),1.20-1.30 (m)
2	3-HB	γCH_3 , βCH	1.19 (d)
3	lactate	CH ₃ , CH	1.32 (d), 4.1 (q)
4	alanine	βCH ₃ , αCH	1.47 (d), 3.77 (q)
5	acetoacetate	CH ₃	2.35 (s)
6	2-OG	CH_2	2.45 (t), 3.02 (t)
7	sarcosine	CH_2	2.71 (s)
8	NADPH	СН	2.80 (dt)
9	creatine	CH ₂ , CH ₃	3.02 (s), 3.92 (s)
10	creatinine	N-CH ₃ , N-CH ₂ -CO	3.02 (s), 3.92 (s)
11	choline	N(CH ₃) ₃ , N-CH ₂	3.19 (s), 4.1 (d)
12	phosphocholine	N-CH ₂	3.21 (s)
13	TMAO	CH ₃	3.27 (s)
14	taurine	NH ₂ -CH ₂ , SO ₃ -CH ₂	3.25 (t), 3.41 (t)
15	myo-inositol	СН	3.52 (dd), 3.61 (t), 4.1 (s)
16	betaine	N(CH ₃) ₃ , CH ₂	3.25 (s), 3.88 (s)
17	inosine	O-CH-N, N-CH=N	4.27 (s), 4.42 (s), 6.09 (d), 8.22 (s)
18	lactose	СН	3.65 (m), 3.94 (m), 5.22 (d)
19	sucrose	CH, CH ₂	3.67 (s), 3.82 (m), 4.21d, 5.39 (d)
20	maltose	СН	3.58 (m), 3.72 (m), 3.84 (m), 3.92 (m), 5.40 (d)
21	anserine	CH ₃ , CH ₂ , CH, N=CH-N	2.68 (m), 3.03 (dd), 3.23 (m), 3.77(s), 4.48 (dd) 7.08(s),
22	tyrosine	H ₃ /H ₅ , C ₅ H/C ₆ H	3.06 (m), 3.20 (m), 3.94 (m), 6.91 (d), 7.20 (d)
23	tryptophan	CH=CH, H ₂ N-CH-CH ₂	3.47 (m), 4.03 (m), 7.23 (t), 7.27 (t), 7.33 (s), 7.55 (d)
24	phenylalanine	CH=CH, CH ₂ , CH-NH ₂	3.13 (m), 3.28 (m), 4.00 (m), 7.32 (m), 7.42 (m)
25	niacinamide	$H_2/H_4/H_5/H_6$	7.58 (dd), 8.21 (d), 8.7 (d), 8.93 (s)
26	uridine	H ₅ , H ₆ , H ₁ '	5.9 (d), 7.9 (d)
27	adenosine	CH-OH, N=CH-N	8.20 (s), 8.34 (s)

Table S4 ¹H NMR assignment of metabolites in kidney of NC, LPS and Bai mice

s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; dd, doublet of doublets, dt, doublet of triplets.

Fig. S1 Histopathological photomicrographs of mice liver (a, b and c) and kidney sections (d, e and f) of NC, LPS and Bai group.

The sliced sections were stained with hematoxylin and eosin (H&E), and examined by light microscopy (200 x magnification).

Compared with NC group (a and b), LPS treated group revealed glycogen cavity and inflammatory cell infiltration in livers (d), and congestion and renal tubular epithelial cell necrosis in kidneys (e). Compared with LPS group, Bai group (c and f) showed apparently attenuated damage.

Fig. S2 Histograms for permutation test scores of OPLSDA models of NC, LPS and Bai group on the basis of 2000 permutations: the red arrows reveal the performance based on the original labels, significant for a p-value less than 0.05.

Fig. S3 Score plots from OPLS-DA analysis of NMR data from serum, liver extracts and kidney extracts of mice: a for serum, b

for liver extracts and c for kidney extracts, respectively.

Fig. S4 Fold change plots color-coded according to the corresponding p-values adjusted by Benjamini-Hochberg method indicating significance of altered metabolites in serum (a and d), liver extracts (b and e) and kidney extracts (c and f). The blue dotted lines and red dashed lines representing an increase or decrease of 20% and 100%, respectively.