Electronic supplementary information (ESI)

Metal-organic complex functionalized protein nanopore sensor for aromatic amino acids chiral recognition

Yanli Guo, Aihua Niu, Feifei Jian, Ying Wang, Fujun Yao, Yongfeng Wei,

Lei Tian and Xiaofeng Kang*

Key Laboratory of Synthetic and Natural Functional Molecule Chemistry College of Chemistry & Materials Science Northwest University 1 Xuefu Ave., Chang'an District, Xi'an, 710127 (P.R.China) E-mail: kangxf@nwu.edu.cn

*Corresponding author: Prof. Xiao-feng Kang College of Chemistry & Materials Science Northwest University, Xi'an 710069, P. R. China Fax: +86-029-88302604; Tel: +86-029-88302604; E-mail: kangxf@nwu.edu.cn **Supporting Figures and table**

Fig. S1 Representative current traces showing no detectable current block in open and $am_7\beta CD$ block current levels for a mixture of 20 nature L- α -amino acids (AAS) in (M113R)₇ nanopore. Condition: 40 μ M am₇ β CD added from the trans compartment and a mixture of AAS (20 μ M of each L- α -amino acid) from the cis side, 1 M NaCl, 10 mM MOPS, pH 8.0, +100 mV. The same phenomena is for hepta-6-sulfato- β CD (S₇ β CD) as an adapter.

Fig. S2 Dwell-time histograms with exponential fits for the events arising from (a) $am_7\beta CD$ and (b) $am_7\beta CD$ -Cu^{II}. Experiment condition: 1 M NaCl, 10 mM MOPS buffer, pH 8.0, +100mV, 40 μ M $am_7\beta CD$ and 20 μ M CuCl₂ added from the trans compartment.

Fig. S3 Representative extensive current traces (a) from single $(M113R)_7$ pore at +100 mV showing the interaction of pore with mixture of L-Phe, D-Phe, $am_7\beta$ CD and CuCl₂. (b) The corresponding blockage current event histograms. Experiment condition: 40 μ M $am_7\beta$ CD and 20 μ M CuCl₂ added from the trans compartment and 20 μ M L-Phe and 20 μ M D-Phe from the cis side, 1 M NaCl, 10 mM MOPS buffer, pH 8.0.

Fig. S4 Representative current traces showing a mixture of L-aliphatic α -amino acids no interaction with cyclodextrin metal complexes in nanopore. Condition: 40 μ M am₇ β CD and 20 μ M CuCl₂ added from the trans compartment and L-aliphatic α -amino acids (20 μ M for each amino acid.) from the cis side, 1 M NaCl, 10 mM MOPS, pH 8.0, +100 mV.

Fig. S5 Representative current traces showing (a) L-dopar (b) 5-sulfosalicylic acid and (c) L-mandelic acid interaction with cyclodextrin metal complexes in nanopore. Condition: 40 μ M am₇ β CD and 20 μ M CuCl₂ added from the trans compartment and 20 μ M for each aromatic compounds from the cis side, 1 M NaCl, 10 mM MOPS, pH 8.0, +100 mV.

Fig. S6 Interaction of L, D-tryptophan with cyclodextrin metal complexes in (M113R)₇ nanopore. Left: representative current traces for (a) L-Trp, $am_7\beta$ CD and CuCl₂; (b) D-Trp, $am_7\beta$ CD and CuCl₂; (c) L-Trp, D-Trp, $am_7\beta$ CD and CuCl₂. Right: the corresponding blockage current event histograms. Condition: 40 μ M $am_7\beta$ CD and 20 μ M CuCl₂ added from the trans compartment and 20 μ M L-Trp or (and) 20 μ M D-Trp from the cis side, 1 M NaCl, 10 mM MOPS, pH 8.0, +100 mV.

Fig. S7 Interaction of L, D-tyrosine with cyclodextrin metal complexes in (M113R)₇ nanopore. Left: representative current traces for (a) L-Tyr, $am_7\beta$ CD and CuCl₂; (b) D-Tyr, $am_7\beta$ CD and CuCl₂; (c) L-Tyr, D-Tyr, $am_7\beta$ CD and CuCl₂. Right: the corresponding blockage current event histograms. Condition: 40 μ M $am_7\beta$ CD and 20 μ M CuCl₂ added from the trans compartment and 20 μ M L-Trp or (and) 20 μ M D-Trp from the cis side, 1 M NaCl, 10 mM MOPS, pH 8.0, +100 mV.

Fig. S8 Extension of the current trace of Figure 3d and the corresponding current event histogram. Condition: 40 μ M am₇ β CD and 20 μ M CuCl₂ added from the trans compartment and a mixture of L-and D-aromatic amino acids (Phe, Trp and Tyr, 20 μ M for each enantiomer) from the cis side, 1 M NaCl, 10 mM MOPS, pH 8.0, +100 mV.

Fig. S9 The histogram of the logarithmically binned dwell time for D-Trp and D-Phe (The corresponding trace see Figure S7). The experiment conditions were the same as in Figure S8.

Fig. S10 Nanopore detection of enantiomeric purity in a mixture of L- and D-tyrosine. (a) Representative single channel recordings of 40 μ M tyrosine enantiomers at various L- and D-Tyr concentration ratios in the presence of 40 μ M am₇ β CD and 20 μ M CuCl₂. (b) The corresponding concentration-dependent event amplitude histograms. Condition: am₇ β CD and CuCl₂ added from the trans compartment and L- and D-Tyr from the cis side, 1 M NaCl, 10 mM MOPS, pH 8.0, +100 mV.

Table S1 The *ee* of prepared and measured for the mixtures of L- and D-tyrosine at various concentration ration. The total concentration of Tyr was fixed to $40 \,\mu$ M.

[L-Tyr]:[D- Tyr]	1:3	3:5	1:1	5:3	3:1
ee%(Prepared)	-50.0	-25.0	0	25.0	50.5
ee%(Measured	-52.3±1.7	-27.5±1.1	-3.1±0.7	25.8±1.4	52.3±2.1
)					