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HRTEM/STEM/EDS. A drop of suspension of the sample was deposited and dried on a copper grid coated 

by a thin carbon film prior to the electron microscopy analysis. Both analysis (TEM and SEM/EDS) was 

carried out using a Hitachi HD-2700 scanning transmission electron microscope (STEM), equipped with a 

cold field emission gun, working at an acceleration voltage of 80 kV and designed for high-resolution 

(HRTEM) imaging with a resolution of 0.144 nm. EDS spectra and chemical maps for the elements were 

acquired using a Dual EDX System (X-Max N100TLE Silicon Drift Detector (SDD)) from Oxford Instruments. 

 

Figure S1. SEM/EDS image showing the most relevant elements present in and around a Gram-

negative bacterium (M. morganii) a few minutes after generating AgNPs by in situ synthesis. 
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Figure S2. SEM/EDS image as shown in Fig. S5, displaying each element separately, present in and around 

a Gram-negative bacterium (M. morganii) a few minutes after generating AgNPs by in situ synthesis. It 

can be appreciated that Ag is only covering the bacterial cell wall and not entering into the cell. 



 

 

 

Figure S4. SERS spectra of Aeromonas at single cell level showing the effects of long exposure times 

when irradiated with 633 nm laser. 

  

Figure S3. Raman signal of the polyslides and the slide covered with in situ 

synthesized AgNPs when irradiated with 532 nm laser. 



By dividing the SERS profiles of the microorganisms investigated in two sections, below and above 

1100 cm-1, we identified several SERS marker bands that contribute to the SERS-based identification at 

strain level, which are highlighted in Figure S3, (see below for the 633 nm laser line). Therefore, 

independent of the laser line used for SERS detection, reliable results are obtained, ensuring the 

pathogens identification. 

 

 

 

 

  

Figure S5. SERS spectra of different microorganisms at single cell level irradiated with 633 nm laser 

line (right – wavenumbers below 1100 cm-1; left – wavenumbers above 1100 cm-1 of the SERS spectra 

of five pathogens are displayed). 



 

 

 

 

  

Figure S6. PCA loadings for the first three principal components, considered also in the PCA analysis 

with 3D scores plot shown in Figure 5. Highlighted are the variables which are corresponding to the 

main SERS marker bands. 



 

Table S1. Tentative assignments for the SERS marker bands of microorganisms 

Wavenumbers (cm-1) Assignments References 

642 δ(COO−) guanine 
1, 2 

659-666 δ(COO−) guanine 1, 2 
683 δ(COO−) guanine 1, 2 

720-740 ν(Adenine, glycosidic ring) 3-5 6 
792 ν(CN) Tyr 2, 3 
813 ν(CN) Tyr 2, 3 
844 ν(C-C) in glycosidic link 7 

863-872 ν(C–C) skeletal proteins 1, 8 
923-929 “Breathing” in aromatic rings 9 

977 “Breathing” in aromatic rings 9 
1005 “Breathing” in aromatic rings 9 
1038 In-plane ν(CH) 10 

1050-1059 ν(C–C) 1 
1089 ν(C–C), ν(C–O) in 

carbohydrates 

10 

1151-1166 (=C–C=) lipids 4, 10 
1223-1231 Amide III 1 

1291 δ(CH) proteins 1 
1324-1328 adenine  
1337-1346 δ(CH) and νs(COO−) proteins 4, 12, 13 
1391-1407 ν(C–O), symmetric (COO-)Phe 7 

1440 δ(CH2) saturated lipids 3 
1453-1467 δ(CH2) saturated lipids 3 
1480-1488 δ(CH2) saturated lipids 3 

1503 Phe 7 
1565 δ(NH, CH), ν(CC) 1 
1577 ν(ADN) 3 
1607 ν(ADN) 3 
1620 ν(ADN) 3 

δ – deformation, νs – symmetric stretching, Phe - phenylalanine, Tyr – tyrosine,  
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