## Supporting Information for Local Collection, Reaction and Analysis with Theta Pipette Emitters

Scheme 1: Chemical Structures of neutral flavonoid molecules detected post-protonation of *A. cepa* cytoplasm



**Figure S1.** (a) Mass spectrum of dextran solution sampled and electrosprayed from a pipette before (a) and after (b) acid catalyzed degradation.



**Figure S2.** (a) Native Allium cepa cytoplasm and (b) after degradation of oligosaccharides. Peaks labelled in red correspond to anthocyanins, in blue are hexose oligosaccharides and in black are lipids.



**Figure S3.** Mass spectrum showing unique isotopic pattern displayed by incorporation of one boron molecule. The peak shown here corresponds to PBA-monosaccharide complex zoomed-in from **Figure 3a** 

When derivatization of oligosaccharides obtained from single *A. cepa* cells were attempted with a pipette having the conductive barrel of the pipette filled with pH 9 solution of 10  $\mu$ M PBA, the mass spectrum was dominated by peaks corresponding to dimers and trimers of PBA as shown below. Although, peaks corresponding to S-B complexes, for example m/z 265, could be isolated in the ion trap and subjected to tandem MS as shown in **Figure S2**, their intensities were low compared to PBA dimer and trimer peaks.



**Figure S4.** (a) Mass spectrum of sample collected from single *A. cepa* cell was subjected to PBA derivatization. The conductive barrel in this study was filled with pH 9 solution of 10  $\mu$ M PBA to enable S-B complexation. The peak at m/z 265 corresponding to monosaccharide-PBA complex

was isolated and subjected to tandem MS. (b) The MS showing the fragments obtained from m/z 265.



**Figure S5.** (a) Mass spectrum of *A. cepa* bulk extract containing hexose oligosaccharides that was subjected to phenylboronic acid (PBA) complexation at pH 9. (b) Mass spectrum of 10  $\mu$ M solution of galactose which was subjected PBA complexation at pH 9. Peak at 265 is monosaccharide-PBA complex, at 351 is bis-monosaccharide-PBA complex, at 427 is disaccharide-PBA complex and at 589 is trisaccharide-PBA complex.



**Figure S6:** Schematic showing the strategy for local reactions on flat tissue sections such as *P. aeruginosa* biofilms.

| Assignment                            | Exact mass | Observed mass | Δ ppm |
|---------------------------------------|------------|---------------|-------|
| Cyanidin                              | 287.0515   | 287.0498      | 6.9   |
| Delphinidin/quercetin+H <sup>+</sup>  | 303.0505   | 303.0508      | 1     |
| Disaccharide+K <sup>+</sup>           | 381.0799   | 381.0727      | 18.8  |
| Cyanidin glucoside                    | 449.1006   | 449.1039      | 7.3   |
| Quercetin glucoside+H <sup>+</sup>    | 465.1033   | 465.1034      | 0.2   |
| Cyanidin malonyl glucoside            | 535.1087   | 535.1102      | 2.8   |
| Trisaccharide+K <sup>+</sup>          | 543.1328   | 543.1308      | 3.6   |
| Cyanidin malonyl acetoyl<br>glucoside | 577.1193   | 577.1322      | 22.3  |
| Quercetin diglycoside+H               | 627.1561   | 627.1728      | 20.5  |
| Rutin+K                               | 649.1170   | 649.1456      | 44    |
| Cyanidin malonyl diglucoside          | 697.1616   | 697.1626      | 1.4   |
| Tetrasaccharide+K <sup>+</sup>        | 705.1875   | 705.1875      | 0     |

**Table S1.** Tentative Peak assignments of saccharides and flavonoid from

 *Allium cepa* epidermal cell in Figure 1

## Table S2. Tentative peak assignments for metabolites and rhamnolipids in *P. aeruginosa* biofilms

| Assignment                                       | Observed mass | Exact mass | Δ ppm |
|--------------------------------------------------|---------------|------------|-------|
| Pyocyanice (PYO)                                 | 211.0832      | 211.0871   | 18.4  |
| 2-heptyl-4-hydroxyquinolone (HHQ)                | 244.1650      | 244.1701   | 20.1  |
| 2-heptyl-3-hydroxy-4-quinolone (PQS)             | 260.1608      | 260.1650   | 16.1  |
| 2-nonyl-4-hydroxyquinolone (NHQ)                 | 272.1972      | 272.2014   | 14.6  |
| C11:db-2-undecyl-4-<br>hydroxyquinoline (UHQ)    | 298.2140      | 298.2170   | 10.0  |
| 2-undecyl-4-hydroxyquinoline N-                  | 314.2017      | 314.2120   | 32.2  |
| oxide (UQNO)                                     | 543.3212      | 543.2935   | 50.1  |
| Rhamnolipid (Rha) C10-C10+K<br>Rha-Rha C10-C10+K | 689.3389      | 689.3514   | 18.1  |