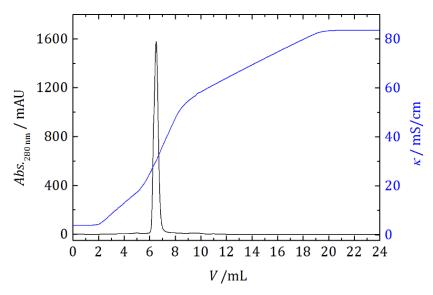
Electronic supplementary information

Monitoring ATPase induced pH changes in single proteoliposomes with the lipid-coupled fluorophore Oregon Green 488

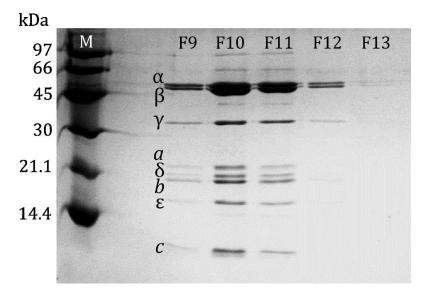
Miriam Schwamborn,^a Johannes Schumacher,^a Jeremias Sibold,^a

Nikolas K. Teiwes,^a Claudia Steinem^{a*}

Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstr. 2,


37077 Göttingen, Germany

Content


- 1. Expression and purification of TF₀F₁-ATPase
- 2. Characterization of the reconstitution of TF₀F₁-ATPase into preformed vesicles
- 3. Determination of the size distribution of ATPase-liposomes
- 4. Calculation of ATPase molecules per vesicle
- 5. ATPase proton pumping activity monitored with the ACMA assay
- 6. Calculated outer membrane area fraction as a function of vesicle diameter
- 7. Measurement of proton leakage of vesicles

1. Expression and purification of TF_0F_1 -ATPase

 TF_0F_1 -ATPase was expressed in *E. coli* DK8 harboring the plasmid pTR19-ASDS, encoding for the ATPase of the thermophilic *Bacillus sp.* PS3.¹ Expression and purification was carried according to the protocol of Schenck and coworkers with some minor changes.² Briefly, the cells were grown in 2 L terrific broth medium with 100 µg/mL ampicillin at 37 °C to an OD₆₀₀ of 1.7. After centrifugation, the cell pellets were resuspendend in 50 mM Tris, 0.5 mM EDTA, 1 mg/mL lysozyme, pH 8.0 and incubated for 30 min at 37 °C. MgCl₂ (5 mM) and DNase I buffer (1:1000 (v/v), 5 mg/mL DNase I in 50 % glycerol (w/v), 20 mM Tris, 1 mM MgCl₂, pH 7.5) was added and stirred for 30 min at room temperature. Subsequently, the suspension was pumped three times through a microfluidizer (Microfluidizer LM10, Microfluidics, Westwood, MA, USA). 250 mm Na₂SO₄ and 0.7 % sodium cholate (w/v) were added and after stirring for 20 min at room temperature, the sample was centrifuged at 20,000 \times g at 4 °C for 30 min. The supernatant was discarded and the pellet was resuspended in 20 mM imidazole, 100 mM KCl, 5 mM MgCl₂ and 1 % *n*-dodecyl- β -D-maltoside (DDM) (w/v), pH 7.6 and stirred for 45 min at room temperature. The supernatant resulting from centrifugation at 20,000 \times q at 4 °C (30 min) was incubated with TALON metal affinity resin (Clontech, Takara Bio Europe, Saint-Germain-en-Laye, France) for 2 h at 4 °C. After washing with 10 column volumes of 20 mM imidazole, 100 mM KCl, 5 mM MgCl₂, 0.08 % DDM (w/v), pH 7.6, the protein was eluted with 250 mM imidazole, 50 mM KCl, 5 mM MgCl₂, 0.05% DDM (w/v). After dialysis against 20 mm HEPES, 20 mm NaCl, 5 mm MgCl₂, pH 7.5, the sample's concentration was increased by performing an anion exchange chromatography (MonoQ 5/50, ÅKTA Purifier 10, GE Healthcare Europe, Freiburg, Germany) starting with 20 mm HEPES, 20 mm NaCl, 5 mm MgCl₂, 0.05 % DDM (w/v), pH 7.5 and increasing the NaCl concentration to 1 m. The protein concentration was determined with the Pierce BCA protein assay kit. The ATPase was stored at 4 °C for several weeks. The elution profile of the anion exchange chromatography is shown in Fig. S1 and the SDS-PAGE gel of the peak fractions is shown in Fig. S2.

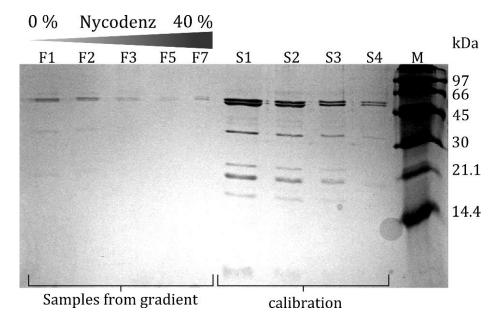
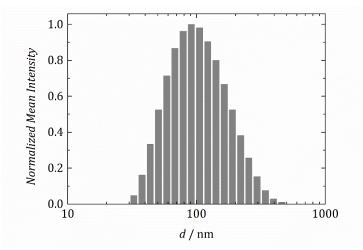


Fig. S1 Elution profile of TF_0F_1 -ATPase (Abs._{280 nm}) and the conductivity of the NaCl-gradient, ranging from 20 mM to 1.0 M. The anion exchange chromatography (Mono Q 5/50 column, ÄKTA Purifier, GE Healthcare Life Science) increased the protein concentration to 2.2 μ M in a volume of 1.2 mL. The course of the conductance indicates an elution at 30 mS/cm corresponding to a fraction of 30 % buffer B (314 mM NaCl). Buffer A: 20 mM NaCl, 20 mM HEPES, 5 mM MgCl₂, 1 mM DDM, pH 7.5, buffer B: 1 M NaCl, 20 mM HEPES, 5 mM MgCl₂, 1 mM DDM, pH 7.5.

Fig. S2 (**A**) SDS-PAGE gel showing the bands of the eight single units of the TF₀F₁-ATPase in the elution fractions F9 to F13 of the anion exchange chromatography ($V_{elution} = 6-7.2 \text{ mL}$). (**B**) Assignment of the TF₀F₁-ATPase subunits to the SDS-PAGE gel bands by Suzuki *et al*.

2. Characterization of the reconstitution of TF₀F₁-ATPase into preformed vesicles

Fig. S3 The Nycodenz density gradient (0 % to 40 % (*w*/*v*)) was prepared in ATPase-buffer (0.5 mM MOPS, 100 mM KCl, 2 mM MgCl₂, pH 7.3) and divided into seven 20 μ L fractions for SDS-PAGE analysis. The SDS-PAGE gel from the reconstitution sample with a nominal protein/lipid ratio of 1:40,000 shows the strongest protein band intensities for the fractions of low density, F1–F3, representing reconstituted TFoF1-ATPase into vesicles of DOPC/POPE/POPS/cholesterol (50:20:10:20). The gel lane corresponding to the fraction of highest density, F7, shows that some amount of protein was not reconstituted into liposomes. S1 to S4 represent the standard samples of 1 mg, 0.5 mg, 0.25 mg and 0.1 mg used for the calibration. For quantification, gray values of the α , β , and γ -bands were read out. A calibration curve obtained from the standard S1-S4 allowed assigning the intensities of F1-F3 to the protein mass reconstituted into vesicles.


The reconstitution efficiency was determined for nominal p/l of 1:40,000, 1:20,000 and 1:8,000 by means of a density centrifugation with Nycodenz (Fig. S3).

resulting in final p/I of 1:29,000, 1:21,000 and 1:19,000.				
Nominal protein/lipid	final protein/lipid	Reconstitution efficiency		
1:40,000	1:29,000	138 %		
1:20,000	1:21,000	95 %		
1:8,000	1:19,000	42 %		

Table S1 Characterization of ATPase reconstitution efficiency, starting from different nominal protein/lipid ratios. With increasing nominal p/l of 1:40,000, 1:20,000 and 1:8,000 a saturation of reconstituted protein occurred, resulting in final p/l of 1:29,000, 1:21,000 and 1:19,000.

3. Determination of the size distribution of ATPase-liposomes

Dynamic light scattering (DLS) experiments were performed with a Malvern Zetasizer.

Fig. S4 Intensity dependent size distribution of ATPase-containing liposomes (DOPC/POPE/POPS/cholesterol (50:20:10:20), nominal p/l = 1:20,000, ATPase-buffer: 0.5 mM MOPS, 100 mM KCl, 2 mM MgCl₂, pH 7.3) measured by dynamic light scattering (DLS). The proteoliposomes showed a diameter distribution of 35-450 nm, with an intensity-weighted mean diameter of 95 nm (FWHM: 51-191 nm).

4. Calculation of ATPase molecules per vesicle

To estimate the average number of TF₀F₁-ATPase molecules per vesicle N_{ATPase} , the intensityweighted mean diameter (95 nm, determined by DLS) and the protein/lipid ratio (p/l = 1:20,000, determined by Nycodenz density gradient centrifugation and quantification of lipid concentration) are needed. Furthermore, a bilayer thickness of h_{bilayer} = 4.5 nm,³ an area of a single ATPase of a_{protein} = 20 nm² ⁴ were assumed. The average lipid area a_{lipid} = 0.62 nm² of the used lipid mixture was calculated from the values of the CHARMM-GUI Membrane builder (see Table S2).⁵

Lipid	Area/lipid	
DOPC (50%)	69.7 Ų	
POPE (20%)	58.8 Ų	
POPS (10%)	60.4 Ų	
Cholesterol (20%)	40.0 Ų	
Average	61.6 Ų	

Table S2 The average area per lipid of the lipid mixture used was calculated from the individual areas per lipid, which were obtained from the CHARMM-GUI Membrane builder.⁵

$$N_{\text{ATPase}} = N_{\text{lipid}} \cdot \frac{p}{l}.$$
 (S1)

The number of lipids per vesicle (N_{lipid}) is calculated with Eq. (S2), with A_{lipids} being the total area of lipids in a vesicle and a_{lipid} being the average area of a single lipid. For calculation of A_{lipids} , the

total protein area (A_{proteins}) is subtracted from the sum of the outer ($A_{\text{outer surface}}$) and the inner ($A_{\text{inner surface}}$) vesicle surface area:

$$N_{\text{lipid}} = \frac{A_{\text{lipids}}}{a_{\text{lipid}}} = \frac{A_{\text{outer surface}} + A_{\text{inner surface}} - A_{\text{proteins}}}{a_{\text{lipid}}}.$$
 (S2)

The outer vesicles surface is defined by $A_{outer surface} = \pi \cdot d_{LUV}^2$ and the inner surface by $A_{inner surface} = \pi \cdot (d_{LUV} - 2h_{bilayer})^2$, with d_{LUV} being the diameter of the vesicle and $h_{bilayer}$ the bilayer thickness.

The total protein area A_{proteins} is calculated from the area fraction of protein χ for a protein/lipid ratio of 1:20,000 and the sum of the outer and inner membrane area ($A_{\text{outer surface}} + A_{\text{inner surface}}$):

$$\chi = \frac{a_{\rm protein}}{a_{\rm protein} + 20,000 \cdot a_{\rm lipid}},\tag{S3}$$

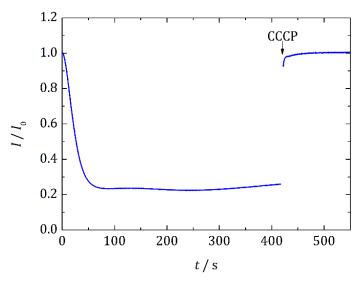
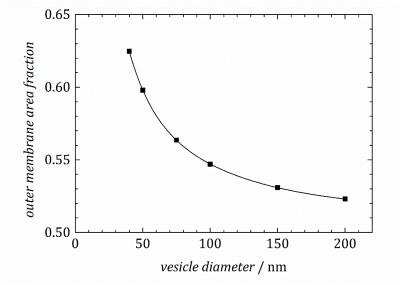

$$A_{\text{proteins}} = \chi \cdot \left(\pi \cdot d_{\text{LUV}}^2 + \pi \cdot \left(d_{\text{LUV}} - 2h_{\text{bilayer}} \right)^2 \right).$$
(S4)

Table S3 Results of the calculation of TFOF1-ATPase molecules per 95 nm diameter vesicle. Four ATPase molecules are reconstituted into an average-sized vesicle.

A _{outer surface} / nm ²	28,450
$A_{inner surface} / nm^2$	23,240
χ	0.16 %
A _{proteins} / nm ²	83.1
Alipids / nm ²	51,510
Nlipid	83,070
Nprotein	4


5. ATPase proton pumping activity monitored with the ACMA assay

The ACMA (9-amino-6-chloro-2-methoxyacridine) based ATPase assay was performed on a Jasco FP-6500 spectrofluorometer at 37 °C. To ATPase buffer (0.5 mM MOPS, 100 mM KCl, 2 mM MgCl₂, pH 7.3, 860 µL) 0.9 µM ACMA (3.5 µL of a 0.2 mM stock solution in DMSO) and 100 µL proteoliposomes ($c_{phospholipid} \approx 64 \mu$ M) were added. The K⁺-ionophore valinomycin (5.0 nM, 4.4 µL of a 0.9 µM stock solution in DMSO) was supplemented to allow for charge equilibration. ATP addition (1.2 mM, 7.8 µL of a 120 mM stock solution in ATPase buffer, adjusted to pH 7.3) induced proton pumping leading to fluorescence quenching. To collapse the proton gradient, carbonyl cyanide 3-chlorphenylhydrazone (CCCP) (0.4 µM, 1.6 µL of a 0.2 mM stock solution in DMSO) was added. ACMA was excited at λ_{ex} = 410 nm and emission was recorded at λ_{em} = 490 nm. The fluorescence intensity was normalized to the intensity obtained immediately after ATP addition (t = 0 s). A characteristic result of an ACMA assay clearly demonstrating the activity of reconstituted ATPase is shown in Fig. S5.

Fig. S5 ACMA-based activity measurement of ATPase-containing liposomes (DOPC/POPE/POPS/cholesterol (50:20:10:20), nominal p/l = 1:20,000) at 37 °C. ATPase buffer (0.5 mM MOPS, 100 mM KCl, 2 mM MgCl₂, pH 7.3) was supplemented with 0.9 μ M ACMA and 5 nM valinomycin. ATP addition (1.2 mM, *t* = 0 s) led to a significant quenching of fluorescence intensity. CCCP addition (0.4 μ M) collapsed the proton gradient, resulting in a restoration of fluorescence intensity to the initial value. $\lambda_{ex/em} = 410/490$ nm.

6. Calculated outer membrane area fraction as a function of vesicle diameter

Fig. S6 Calculated outer membrane area fraction as a function of vesicle diameter, assuming a bilayer thickness of 4.5 nm.^{3,6} The relative amount of fluorescence intensity emitted from the OG488-DHPE of the outer vesicles membrane leaflet, correlates with the area fraction of the outer vesicle surface. For a 100 nm diameter vesicle the outer membrane area is approx. 55 % of the total area, which is in good agreement with the calibration curve's minimum of 59 % remaining intensity.

7. Measurement of proton leakage of vesicles

Fig. S1. (A) To assess proton permeability, the fluorescence intensities of OG488 DHPE-doped vesicles with luminal pH-values of 7.3 (black), 6.3 (red), 5.3 (blue) and 4.3 (green) were observed in an external buffer of pH 7.3. All intensities were normalized to the fluorescence intensity at t = 0 s of the vesicles with an internal pH of 7.3. The small intensity decrease of the sample with luminal pH of 7.3 is a result of fluorescence bleaching. (**B**) Intensity ratios measured at 150 s (*I*) normalized to the initial intensity at t = 0 s ($t_{t=0}$). No significant intensity changes are observed within this time window of observation supporting that proton leakage can be excluded.

References

- 1. T. Suzuki, H. Ueno, N. Mitome, J. Suzuki and M. Yoshida, J. Biol. Chem., 2002, 277, 13281.
- 2. S. Schenck, S. M. Wojcik, N. Brose and S. Takamori, Nat. Neurosci., 2009, 12, 156.
- 3. J. Gallova, D. Uhrikova, A. Islamov, A. Kuklin and P. Balgavy, Gen. Physiol. Biophys., 2004, 23, 113.
- 4. M. Tutus, F. F. Rossetti, E. Schneck, G. Fragneto, F. Forster, R. Richter, T. Nawroth and M. Tanaka, *Macromol. Biosci.*, 2008, **8**, 1034.
- 5. http://www.charmm-gui.org/?doc=input/membrane_only&step=1 (last accessed April 2017).
- 6. M. Alwarawrah, J. Dai and J. Huang, J. Phys. Chem. B, 2010, 114, 7516.