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Theoretical Description of the DMA Transfer Function 

 Knowledge of the DMA transfer function and the transmission of particles through 

system tubing is necessary in particular for application of equation (2) and generally for use of 

the Twomey-Markowski algorithm for transfer function inversion.  For nanometer-scale 

particles, diffusion is the main contributor to transfer function broadening in the DMA.  The 

transfer function provided by Stolzenburg and McMurry,
1
 which accounts for particle diffusion, 

is given as: 

𝜃𝐷|𝐾∗ =
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where 𝜎 represents the non-dimensional standard deviation of the mobility distribution exiting 

the DMA, 𝛽 is the ratio of the aerosol to sheath flowrate, and �̃� is the particle mobility 

normalized by the mobility at which particles are maximally transmitted through the DMA, 𝐾∗. 

erf signifies that the error function is applied to the argument following in parentheses. �̃� is 

defined by: 

�̃� =
𝐾

𝐾∗
          (S2a) 

𝐾∗ is calculated by: 



𝐾∗ =
𝑄𝑠ℎln⁡(

𝑅2
𝑅1
)

2𝜋𝐿𝑉
          (S2b) 

where 𝑄𝑠ℎ is the volumetric sheath flowrate in the DMA, 𝑅2 and 𝑅1 are the respective outer and 

inner radii of the DMA, 𝐿 is the DMA length, and 𝑉 is the voltage applied across the DMA 

electrodes. 

𝜎 is the standard deviation of the mobility distribution exiting the DMA, defined by: 

𝜎2 = 𝐺𝐷𝑀𝐴 ∗ �̃�        (S3) 

𝐺𝐷𝑀𝐴 is a non-dimensional geometry factor and �̃� is: 

�̃� =
2𝜋𝐿𝐷

𝑄𝑠ℎ
=

2𝜋𝐿𝑘𝐵𝑇𝐾

𝑄𝑠ℎ𝑧𝑒
         (S4) 

where 𝐷 is the particle diffusion coefficient, 𝑘𝐵 is the Boltzmann constant, 𝑇 is particle 

temperature (assumed to be that of the surrounding gas), and 𝑧𝑒 is the total charge on the 

particle. Particles are typically singly charged (z = 1) in this study. 

 Because diffusion is the main contributor to transfer function broadening in any DMA, 

overall resolving power can be improved by decreasing particle residence time in the DMA. This 

is accomplished by increasing both the sheath flow and the potential applied across the DMA 

electrodes. Unfortunately, the transition to turbulence at high sheath flows perturbs particle 

streamlines, significantly affecting instrument resolution and reducing the predictability of 

mobility-dependent particle transmission. Transition to turbulence limits the TSI nano-DMA 

sheath flow and resolution to maxima of ~15 l min
-1

 and ~10 (with higher sheath flowrates often 

leading to non-idealized behavior), respectively. This low sheath flowrate is simple to control 

and measure, and because all other relevant parameters are well-characterized, the use of 

equation (S1) to describe particle transmission through the nano-DMA is straightforward. 

 



Comparison of 𝒚|𝒕∗,𝑲∗ and 𝜽𝑫|𝑲∗  

Figure S1a displays selected measured values, 𝑦|𝑡∗,𝐾∗, for various t* values (red).  Also 

plotted are the nano-DMA transfer functions for the K* corresponding to the peak mobility of the 

measured values. The nano-DMA transfer functions have been scaled (arbitrarily, as they are 

dimensionless functions) to have the same maximum value as the 𝑦|𝑡∗,𝐾∗, to better facilitate 

comparison.  For a high resolving power DT-IMS-CPC, 𝑄𝐼|𝑡∗, is narrowly distributed, and 

𝑦|𝑡∗,𝐾∗ would be distributed only by 𝜃𝐷|𝐾∗, the nano-DMA transfer function. Therefore, the 

scaled nano-DMA transfer functions shown in figure S1 represent the measured 𝑦|𝑡∗,𝐾∗ for a 

perfect DT-IMS-CPC. In reality, 𝑄𝐼|𝑡∗ has a finite width, and the difference in shape between the 

scaled nano-DMA transfer function and the 𝑦|𝑡∗,𝐾∗ represents the true DT-IMS-CPC transfer 

function, 𝑄𝐼|𝑡∗. These differences are quantified by employing the Twomey-Markowski 

algorithm. 

 To further illustrate that the DMA and DT-IMS need to be similar in resolving power, 

figure S1b focuses on the measured 𝑦|𝑡∗,𝐾∗ values (red circles) for t* = 6 s, displaying again the 

scaled nano-DMA transfer function (black line) along with several simulated 𝑦|𝑡∗,𝐾∗,𝑠𝑖𝑚 values 

(triangles).  𝑦|𝑡∗,𝐾∗,𝑠𝑖𝑚 were calculated through computation of the integral on the RHS of 

equation (4a) by assuming the skew Gaussian form of 𝑄𝐼|𝑡∗ (determined in the main text) and 

varying the scale factor of 𝑄𝐼|𝑡∗.  This results in variable transfer function width, or resolution, 

with the adjusted resulting resolving powers noted in the figure caption.  The pink triangles in 

figure S1b demonstrate that for a DT-IMS-CPC with high resolution (>70), the 𝑦|𝑡∗,𝐾∗,𝑠𝑖𝑚 

collapse to the scaled nano-DMA transfer function. As simulated instrument resolving power 

decreases, 𝑦|𝑡∗,𝐾∗,𝑠𝑖𝑚 becomes increasingly broad relative to the DMA transfer function. 

      



 

 

Figure S1. (a) Selected measured 𝑦|𝑡∗,𝐾∗ for various t* values (red) along with the nano-DMA 

transfer function for the K* corresponding to the peak signal of the measured values are plotted. 

The nano-DMA transfer functions have been scaled to have the same peak value as the measured 

values for the sake of comparison. (b) 𝑦|𝑡∗,𝐾∗ for 𝑡∗ = 6⁡𝑠 (red circles) and the nano-DMA 

transfer function (black line - normalized to the measured values) corresponding the 𝐾∗ at which 

the measured values are peaked along with several simulated 𝑦|𝑡∗,𝐾∗,𝑠𝑖𝑚 values (triangles) 

calculated for varying DT-IMS-CPC transfer function widths. The simulated 𝑦|𝑡∗,𝐾∗ values were 

calculated by varying the DT-IMS-CPC transfer function according to its resolution; pink 

corresponds to a high resolution system (R = 73), blue to the current DT-IMS-CPC (R = 13.3), 

green to a system with similar resolution to that of the nano-DMA (R = 8.8), and orange to a low 

resolving power system (R = 5). The simulated 𝑦|𝑡∗,𝐾∗ values have been normalized in magnitude 

to the same peak value for the sake of comparison. 

 

 

 

 

 

 

 

 



Parameterization of 𝑸𝑰 as Skewed Gaussian Functions 

The skewed Gaussian distribution can be described simply as a Gaussian distribution 

multiplied by its cumulative distribution function. The functional form used in this work is a 

typical skewed Gaussian with an additional multiplicative scaling factor: 

 𝑄𝐼,𝑃|𝑚,𝑠,𝐴,∝
= 2 ∗ 𝐴 ∗ Ф|𝑚,𝑠,α ∗ 𝜑|𝑚,𝑠          (S5) 

where 𝜑|𝑚,𝑠 is a standard Gaussian probability density function which is distributed in inverse 

mobility and defined by its mean, m, and standard deviation, 𝑠: 𝜑|𝑚,𝑠 =
1

√2𝑠2𝜋
𝑒
−
(1/𝐾−𝑚)2

2𝑠2 . Ф|𝑚,𝑠,∝ 

is the cumulative distribution function of the skewed Gaussian with an additional factor, α, 

which affects the skew of the final distribution. The parameter 𝐴 is used as an amplitude scaling 

factor. 

As described in the main text, each inverted 𝑄𝐼|𝑡∗ was fitted parametrically to equation 

S5 using MATLAB’s non-linear fitting procedure, resulting in data relating the skew Gaussian 

parameters (, 𝑚, 𝑠, and 𝐴) to 𝑡∗.  These skewed Gaussian parameters are shown as functions of 

𝑡∗ with their best fit curves in figures S2a-f. Separate fits for both 𝑠 and 𝐴 were performed before 

and after 𝑡∗ = 9.5⁡𝑠 because the relationship between the parameters and t* changed after 

𝑡∗ = 9.5⁡𝑠. The average value for at 𝑡∗< 9.5 s was used for all parameterizations and fits. 

Error parameters are shown in figures (S2g,h). The low R
2
 for t* > 11.5 s is most likely due to 

the use of a constant for all t*. 

         

 

 

 

 



 

Figure S2a-f. Parameters which resulted from fitting the modified skew Gaussian to the inverted 

𝑄𝐼 data for all t* values. (S2g, h) Fit error evaluation. The parameters plotted are location – m 

(a), scale - s (b, c), amplitude – A (d, e), and shape -  (f). The errors represented are the R-

squared value of the fit (g) and the Root-mean-squared error of the fit (h). 

 

 

 

 



DT-IMS Transfer Function, 𝜽𝑰  

 The transfer function of an aspirating, fluid mechanically gated DT-IMS was derived 

previously
2
 through modification of the original derivation by Revercomb and Mason

3
 by 

accounting for both the effect of the counter flow and the finite width of the initial ion pulse. The 

DT-IMS transfer function is defined as a Gaussian function distributed in time with width 

defined by both diffusional broadening and the initial width of the ion pulse:  

𝜃𝐼 = √
2ln⁡(2)

𝜋

1

∆𝑡𝑑
× exp⁡(−4 ln(2) [

𝑡𝑑−𝑡𝑎𝑣𝑒

∆𝑡𝑑
]
2

)    (S6) 

where 𝑡𝑑, the drift time, denotes the time necessary for a particle to reach the CPC inlet, 𝑡𝑎𝑣𝑒 

represents the average drift time for particles of mobility K, and ∆𝑡𝑑 is the FWHM of the 

distribution. 𝑡𝑎𝑣𝑒 and ∆𝑡𝑑 are defined theoretically: 

𝑡𝑎𝑣𝑒 =
𝐿

𝑣𝑑
=

𝐿∗𝐿𝐸

𝐾𝑉
        (S7) 

where L is the DT-IMS length, and 𝑣𝑑, the drift velocity, is calculated simply through the 

definition of electrical mobility: 𝑣𝑑 = 𝐾𝐸 =
𝐾𝑉

𝐿𝐸
. 𝐿𝐸 is the distance between the first and last 

electrodes, and V is the applied voltage to the DT-IMS. ∆𝑡𝑑 is calculated by combining the effect 

of diffusional broadening and the initial width (transformed to its effect in drift time) of the 

sample volume: 

 (∆𝑡𝑑)
2 = (∆𝑡0)

2 +
(𝑘𝐵𝑇)

𝑧𝑒(𝑉⁡−⁡
𝑢𝑐𝐿

𝐾
)
16ln⁡(2)𝑡𝑎𝑣𝑒

2     (S8) 

where ∆𝑡0 represents the half width of the sample volume converted to time, again via the 

particle drift velocity:  ∆𝑡0 =
∆𝑥

𝑣𝑑
, where ∆𝑥 is the half width in distance of the sample volume, 

estimated to be 0.8 cm in Oberreit et al.
2
 𝑘𝐵 is the Boltzmann constant, T is temperature of the 

surrounding gas, z is the integer charge on the particle, e is the electron charge, V is the applied 



voltage to the DT-IMS, and 𝑢𝑐 is the centerline velocity of the counterflow (calculated by 

dividing the volume flowrate by the cross-sectional area of the DT-IMS). 

 

CPC Response Time Distribution, 𝜱𝑪 

 The response time distribution, 𝛷𝐶, of the WCPC (Model 3786, TSI, inc., Shoreview, 

MN) was measured previously
2
 and is displayed again in figure S3 as a function of time in the 

CPC, 𝑡𝐶. In order to perform the calculations described in the correction factor function 

determination, the response time distribution function data were represented continuously in time 

by interpolating using MATLAB’s spline interpolation algorithm. 

 

Figure S3: Response time distribution function of the TSI WCPC Model 3786, reported in 

Oberreit et al (2014)
2
. The distribution peak value is tC = 0.846 s. 
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