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Supporting Section S1: Dimensional Analysis 

We perform dimensional analysis to determine the general form of the relation between the 

various variables, which are at play in the hydrodynamic problem of a sphere attached to an 

oscillating wall, which are six in total, i.e., the hydrodynamic force amplitude Δ𝐹!, the 

velocity amplitude 𝑈, the angular frequency ω, the particle radius a, the fluid kinematic 

viscosity νF and the fluid mass density ρF. According to the Buckingham-Pi theorem,1 one can 

combine six variables (with three units, being length, time and mass) into 6 – 3 = 3 

independent dimensionless parameters Π! = Δ𝐹!!𝑈!𝜔!𝑎!𝜈!!𝜌!
! , where i = 1, 2 or 3 and α, β, 

γ, δ, ε and ζ are determined by demanding that Π! are dimensionless. This procedure results in 

the dimensionless force Π!  = Δ𝐹!/(𝜌!𝑎!𝜔𝑈), the dimensionless size Π2 = a ω1/2νF
-1/2, and 

the dimensionless velocity Π!  =  𝑈𝑎/𝜈!, and the latter is also known as the Reynolds 

number Re, which is estimated to be Re = 10-2, based on 𝑈  = 10-1 m s-1, 2 a = 10-7 m and νF 

= 10-6 m2s-1. Since Re is small compared to unity, the hyrodynamics are independent of Re, 
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and the problem is therefore fully described by a single dimensionless, complex-valued 

function 𝜑 that relates the two remaining dimensionless variables Π! = 𝜑 Π! . By using the 

above definitions for Π! and Π2 and δ = (2νF/ω)1/2, we write the governing relation as follows: 

Δ𝐹! = 𝑖𝜌!𝑎!𝜔𝑈𝜑
!
!

 ,                                                             (S1) 

where δ is the viscous penetration depth and 𝜑 is a (yet unknown) dimensionless, complex 

valued function of a single dimensionless variable δ/a. The imaginary unit has been added to 

Eq. (S1) to ensure that the real and imaginary parts of 𝜑 correspond to frequency shift and 

bandwidth shift, respectively. 

 

Supporting Section S2: Details of the Lattice Boltzmann Method 

The Lattice Boltzmann (LB) method relies on solving the molecular probability density, 

which is a function of space, time and the molecular velocity, and evolves according to the 

Boltzmann equation.3 Macroscopic quantities, such as the fluid velocity and the pressure, are 

moments of the velocity distribution function. The 3D space and time are discretized on a 

four dimensional hyper-cubic grid, with a spatial and temporal lattice spacing of Δx and Δt, 

respectively. On each space-time lattice point, there is an additional discretization of the 

molecular velocity, which in this work involves 19 discrete velocities. Being a three-

dimensional model (spatially) with 19 discrete velocities, this model is in the literature 

referred to as D3Q19.3 The current LB scheme involves transporting probability densities 

between neighboring lattice nodes and relaxing them towards the Maxwell Boltzmann 

distribution, using the single relaxation time, collision model, which is in the literature 

referred to as the BGK collision model.3  

As sketched in Fig. 1a in the main text, the fluid is bounded by six surfaces, on which 

boundary conditions are imposed. On the lower, bounding surface, which is the interface 

between the fluid and the solid substrate, we assume the no-slip boundary condition, which 
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means that the fluid velocity equals that of the substrate. On the upper, bounding surface we 

apply the free-slip condition, which means that the fluid can flow freely parallel to this 

surface, while it cannot penetrate this surface. In order to satisfy the free-slip condition on the 

top and the no-slip condition on the bottom (substrate; wall plus sphere), we employ the half-

way, bounce-back method,4 which approximates the shape of the sphere as a 3D staircase, 

which is illustrated in Fig. 1b in the main text.  

On the remaining four bounding surfaces, which are normal to the horizontal directions, 

we impose periodic boundary conditions. Physically, this condition corresponds to a periodic 

arrangement of spheres on a horizontal square lattice with a spacing L. Since we are 

interested in the limit where the spheres do not couple hydrodynamically, we ensure, and 

validate in Section S4, that L is sufficiently large compared to the sphere radius a as well as 

to the viscous penetration depth δ. 

The LB method was implemented in FORTRAN and parallelized using the Message 

Passing Interface protocol. 

 

Supporting Section S3: Determining the QCM-D Force from the Simulation 

During simulation, we monitor the real valued hydrodynamic force FH (t) on the substrate 

using two methods. The first method involves surface integrating the momentum exchange 

between the fluid and the substrate, by evaluating changes in the LB probability during 

bounce-back.5 The second method is based on the integral fluid momentum balance, which is 

obtained by taking the volume integral of Eq. (3) in the main text: 

𝐹! = 𝜌!𝑉!𝜔 𝑈 sin 𝜔𝑡 − !!!
!"

 ,                             (S2) 

where VF and PF are the total volume and the total momentum of the fluid in the 

computational domain, respectively. We compute the difference ΔFH(𝑡) between the 

hydrodynamic force on the substrate FH (sphere plus wall) minus the hydrodynamic force on 
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the wall without the sphere 𝐿! 𝑈 𝜌! 2𝜔𝜈!cos 𝜔𝑡 + !
!

. 6 Fig. S1 shows ΔFH(𝑡) as a 

function of time for four simulations corresponding to δ/a = 0.6, 1.2, 2.3 and 4.6, 

respectively. The total force ΔF acting on the QCM-D (particle inertia force plus 

hydrodynamic force) is computed by adding the inertia of the sphere −𝜔 𝑈 sin 𝜔𝑡 𝑚! to 

ΔFH(t). Here L is the horizontal domain size (inter-particle spacing), 𝑈  is the absolute value 

of the quartz surface velocity amplitude, ρF is the fluid mass density, ω = 2πf is the quartz 

angular frequency, mP = (4π/3)ρPa3 is the particle mass and ρP is the particle mass density, 

respectively. The corresponding (complex-valued) QCM-D force amplitude ∆𝐹 [defined in 

Eq. (1) in the main text] is computed by Fourier transformation of ΔF(t) between T < t < 2T, 

where T = 1/f is the oscillation period. The real and imaginary parts of Δ𝐹/𝑖𝑈 correspond to 

the QCM-D frequency and bandwidth shifts; see Eq. (1) in the main text. 

 

Supporting Section S4: Accuracy of the Numerical Simulation 

The accuracy of the simulation depends on the grid resolution a/Δx and on the relative 

domain size L/a or L/δ. The grid resolution must be sufficient, such that the surface of the 

sphere is accurately represented by the staircase approximation (see Fig. 1b in the main text), 

and the domain size L must be large enough compared to the sphere radius a, and compared 

to the viscous penetration depth δ, such that there is negligible hydrodynamic coupling 

between the sphere and its periodic images and negligible effect of the unphysical free-slip 

condition at the upper surface.  

In this work, we use a/Δx  = 10 - 20 and L/a = 8 – 32 (see Table S1) and we verify here 

that these values guarantee sufficient numerical accuracy. Since there is no analytical or 

reference solution available for the hydrodynamics of a sphere on an oscillating wall, we first 

study the accuracy of the method by considering two alternative flow configurations, for 
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which analytical solutions are available. These configurations are that of the steady shear 

flow past a sphere attached to a wall and that of an oscillating sphere in a stagnant fluid in the 

absence of walls. These problems contain essentially the same physics and numerical 

challenges as the actual problem of a sphere attached to an oscillating wall.  

The steady shear test problem is simulated by placing a sphere on the bottom wall of the 

cubical, computational domain and placing a second, no-slip wall at the top of the domain, 

which is moving with a velocity γL in the x direction. Here γ is the shear rate and L is the 

domain height. Periodic conditions are applied on the remaining four boundaries. At the start 

of the simulation, the fluid velocity profile is assumed to be linear, i.e., ux (t = 0) = γz, which 

corresponds to the profile between two moving walls in the absence of the sphere. During the 

flow simulation, we measure the hydrodynamic force ΔFH on the sphere as a function of 

time, which is shown in Fig. S2a. As can be seen in that figure and also in Table S2, the 

scaled force ΔFH/(6πa2ηFγ) converges to an asymptotic value, which is within 3% of the 

theoretical value of 1.7.6  

Next, we discuss the test case of an oscillating sphere in a stagnant fluid in the absence 

of walls. Here, we place a sphere in the center of the computational domain, which is periodic 

on all six boundaries. Similar to the case of the flow around the sphere on the oscillating wall, 

we solve this problem in a reference frame that oscillates with the sphere by adding an 

oscillating body force to the equation of motion [see Eq. (3) in the main text]. At the start of 

the simulation, the fluid is at rest. During the simulation, we measure the force on the sphere 

by using two methods. The first method involves summing the hydrodynamic stress over the 

surface elements of the sphere,4 and the second is based on the acceleration of the fluid as a 

whole [see Eq. (S2)].  Fig. S2b shows that both methods produce a nearly identical time-

dependent force, which validates the implementation of the co-moving reference frame. We 

measure the complex-valued amplitude of the hydrodynamic force oscillation by Fourier 
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transformation of the force signal over one period T = 1/f, between T < t < 2T.  Table S3 

shows, that, for the present numerical parameters, the real and imaginary parts of the 

simulated, complex force amplitude are within 10 % and 2 % of the analytical solution, 

respectively. 7 

 In addition to these analytical test cases, we consider the grid-convergence of the 

simulation of the sphere on the oscillating wall, by comparing the simulation outcome to a 

second series of simulations, in which we doubled the grid resolution in each direction. As 

reported in Table S1, we find that for δ/a < 4, the numerical solutions on both grids are within 

1% of each other for the frequency shift and within 10% of each other for the bandwidth 

shift. The bandwidth shift is more prone to numerical inaccuracy than the frequency shift 

because the bandwidth shift is a few-fold smaller than the frequency shift. These results 

support that for δ/a < 4, the domain is sufficiently large and the grid is sufficiently fine, such 

that the numerical solution is, to a reasonable extent, independent of these numerical 

parameters. 

 

Supporting Section S5: Diffusion Limited Adsorption Model 

Here we derive a model for the number N of adsorbed vesicles onto the QCM-D surface: 

dN/dt = AQJ, where AQ = πW2/4 = 97 mm2 is the QCM-D substrate area, W = (4/π)(AQ)1/2 = 11 

mm is the diameter of the cylindrical QCM-D measurement chamber and J = cD/h is the 

particle flux onto the surface, which is assumed to be limited by diffusion.8,9 The particle 

number density in the bulk c = cmNAaL
2/(8MLa2) = 6 × 1017 m-3 is estimated by dividing the 

number of lipid molecules per unit volume of solution by the number of lipid molecules in 

the bilayer of a single vesicle, where it is assumed that each lipid occupies an area in the 

membrane πaL
2, that is equal to that in a planar bilayer. The particle diffusivity D = 

kBT/(6πηFa) is modeled using the Stokes-Einstein relation, and the particle-concentration-
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boundary-layer-thickness h = (DWH/V)1/3 is modeled using flat plate boundary layer theory.10 

Here NA is Avogadro’s number, aL = 0.45 nm is the cross-sectional radius of one lipid 

molecule, 11  ML = 786 g/mol is the molecular weight of DOPC lipid, kBT is the Boltzmann 

energy, V = Q/WH is the fluid velocity, Q = 50 µL/min is the volumetric flow rate through the 

QCM-D chamber, and H =0.6 mm is the height of the cylindrical QCM-D measurement 

chamber, respectively. Combining the above equations shows that N increases linearly in 

time: 

𝑁 ≈ 0.13𝑐𝑄! ! !!!!!
!!!!

! !
𝑡.                                           (S3) 

Eq. (S3) is based on two main approximations: (i) estimating the number of lipid molecules 

per vesicle, by considering the area per lipid in a flat bilayer configuration and (ii) 

approximating the diffusion-limited adsorption flux, using flat plate boundary layer theory, 

while ignoring the geometrical details of the QCM-D flow chamber. The latter assumption 

probably introduces the most uncertainty, and the model can at best be considered an order of 

magnitude estimate. 

 

Supporting Section S6: Experimental Materials & Methods 

Vesicle Preparation 

Small unilamellar vesicles (SUVs) were prepared from 5 mg/mL 1,2-dioleoyl-sn-glycero-3-

phosphocholine (DOPC) lipid in an aqueous buffer solution with 10 mM Tris [pH 7.5] and 

150 mM NaCl by extrusion through a polycarbonate membrane with either 30, nm 50 nm, 

100 nm or 200 nm pores (Mini Extruder, Avanti Polar Lipids, Alabaster, AL). The vesicles 

are referred to as SUV1, SUV2, SUV3 and SUV4, and their properties are summarized in 

Table 1 in the main text. The nominal (intensity weighted) radius a of the vesicles is 

measured by dynamic light scattering (90Plus Particle Size Analyzer, Brookhaven Instrument 

Corporation, Holtsville, NY), resulting in a = 27 nm, 38 nm, 57 nm and 78 nm, respectively. 
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The corresponding size distributions are provided in Fig. S4. All solutions were prepared 

using Milli-Q-treated water with a minimum resistivity of 18.2 MΩ·cm (Millipore, Billerica, 

MA, USA). Immediately before the QCM-D experiment, the vesicles were diluted to cm = 

0.05 mg/mL for SUV2 and cm = 0.005 mg/mL for SUV1, SUV3 and SUV4 and in a 10 mM 

Tris buffer, with a NaCl concentration of either 75 or 250 mM.  

 

QCM-D Experiments 

A Q-Sense E4 QCM-D instrument (Biolin Scientific AB, Stockholm, Sweden) was used to 

monitor SUV adsorption onto an AT-cut, piezoelectric, quartz crystal, with a fundamental 

frequency of f0 = 5 MHz and a sputter-coated, 50-nm thick layer of titanium (model no. QSX 

310, Biolin Scientific AB). A peristaltic pump (Reglo Digital, Ismatec, Glattbrugg, 

Switzerland) was used to inject liquid samples into the cylindrical measurement chamber 

(diameter W = 11 mm, area AQ = 97 mm2, and height H = 0.6 mm) at a flow rate of Q = 50 

µL/min. The temperature in the measurement chamber was maintained at 25.0 ± 0.5 °C. The 

experimental data were collected at the 3rd to 11th odd overtones using the QSoft software 

program (Biolin Scientific AB).  
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Table S1. Numerical parameters and results of the simulations of a sphere attached to 
an oscillating wall. a is the particle radius, Δx is the grid spacing, L is the horizontal domain 
size, Lz is the vertical domain size, δ = (νF/πf)1/2 is the viscous penetration depth, νF = 
Δx2/(6Δt) is the fluid kinematic viscosity, ρF is the fluid mass density, f is the oscillation 
frequency, ω = 2πf is the oscillation angular frequency, 𝑈 is the complex-valued velocity 
amplitude and ∆𝐹 is the complex-valued QCM-D force amplitude [defined in Eq. (1) in the  
main text], where the real part  ℜ(∆𝐹/𝑖𝑈) corresponds to the frequency shift and the 
imaginary part ℑ(∆𝐹/𝑖𝑈) corresponds to the bandwidth shift. Simulations are carried out for 
δ/a between 0.6 and 4.6. The computed relation between ∆𝐹 and δ/a is given in Fig. 3 in the 
main text. The numerical accuracy of the simulations for δ/a < 3 is verified by comparing 
results on a relatively coarse grid (open circles in Fig. S3) to results on a relatively fine grid 
(plusses in Fig. S3), where the number of grid points has been doubled in each direction.  
 
 

Marker 

Fig. S3 

δ/a Lz/δ a/Δx L/Δx Lz/Δx f Δt 
ℜ

∆𝐹
𝑖𝜌!𝑎!𝜔𝑈

 ℑ
∆𝐹

𝑖𝜌!𝑎!𝜔𝑈
 

o 0.576 22.2 20 160 256 4×10-4 12.55 3.22 

+ 0.576 22.2 40 320 512 1×10-4 12.52 3.87 

o 1.15 11.1 10 80 128 4×10-4 17.16 5.33 

+ 1.15 11.1 20 160 256 1×10-4 17.15 5.89 

o 2.30 5.56 10 160 128 1×10-4 24.40 6.98 

+ 2.30 5.56 20 320 256 0.25×10-4 24.63 7.67 

n.a. 4.61 5.56 10 320 256 0.25×10-4 33.67 6.90 
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Table S2. Validation of the numerical method for the steady shear flow past a sphere 
attached to a wall. a is the particle radius, Δx is the grid spacing, L is the domain size (same 
in all three directions), ΔFH is the simulated hydrodynamic force on the sphere, γ is the shear 
rate and ηF

 is the fluid dynamic viscosity. The %Error corresponds to the difference between 
the simulated value and the analytical solution.6 
 

a/Δx L/a ΔFH/6πηFa2γ 

Simulation 

ΔFH/6πηFa2γ %Error 

5 13 1.740 2.4% 

10 26 1.685 0.87% 

 

Table S3. Validation of the numerical method for an oscillating sphere in the absence of 
walls. a is the particle radius, Δx is the grid spacing, L is the domain size (same in all three 
directions) and 𝐹!is the complex-valued, simulated, hydrodynamic force amplitude, where 
the real part ℜ(𝐹!/i𝑈) is in phase with the displacement oscillation and the imaginary part 
ℑ(𝐹!/i𝑈) is opposite to the velocity oscillation, 𝑈 is the velocity amplitude and ηF

 is the fluid 
dynamic viscosity. For this test case, we used a/δ = 0.22, where δ = (νF/πf)1/2 is the viscous 
penetration depth, νF = ηF/ρF is the fluid kinematic viscosity, ρF is the fluid mass density and f 
is the oscillation frequency. The %Error corresponds to the difference between the simulated 
value and the analytical solution. 7 

 

a/Δ

x 

L/

a 

ℜ !!
!!"!!!!

 

Simulatio

n 

ℜ !!
!!"!!!!

 

Analytical 

ℜ !!
!!!!!!!

 %Er

ror 

ℑ !!
!!"!!!!

 

Simulatio

n 

ℑ !!
!!"!!!!

 

Analytical 

ℑ !!
!!!!!!!

 %Er

ror 

5 13 0.241 0.265 9.3% 1.215 1.217 1.7% 

10 26 0.493 0.531 7.2% 1.419 1.434 1.1% 
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Supporting Fig. S1. Numerical simulation of a sphere attached to an oscillating wall. 
The hydrodynamic force Δ𝐹!/(𝜌!𝑎!𝜔 𝑈 ) due to the adsorption of a sphere on the QCM-D 
surface, as a function of scaled time ft for various scaled viscous penetration depths δ/a. ρF is 
the fluid mass density, a is the sphere radius, 𝑈  is the absolute value of the quartz velocity 
amplitude, δ = (νF/πf)1/2 is the viscous penetration depth, νF is the fluid kinematic viscosity, f 
is the oscillation frequency and ω = 2πf is the oscillation angular frequency.  
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Supporting Fig. S2. Validation of the numerical method. (a) Steady shear flow past a 
sphere attached to a wall. The scaled hydrodynamic force ΔFH/(6πηFa2γ) on the sphere, as a 
function of the scaled time ta2/νF. ηF is the fluid dynamic viscosity, a is the sphere radius, γ is 
the shear rate and νF is the fluid kinematic viscosity. Further numerical parameters are given 
in Table S2. The solid and the dashed lines correspond to a grid resolution of a/Δx = 5 and 
10, respectively, where Δx is the lattice spacing. The dotted line corresponds to the analytical 
solution.6 (b) Oscillating sphere in the absence of walls. The scaled hydrodynamic force 
𝐹!/(6𝜋𝜂!𝑎 𝑈 ) on the sphere, as a function of the (scaled) time ft for a grid resolution 
(number of grid points per sphere radius) of a/Δx = 5 and a scaled particle size of a/δ = 0.22.  
Here δ = (νF/πf)1/2 is the viscous penetration depth and f is the oscillation frequency. Further 
numerical parameters are given in Table S3. The hydrodynamic force is computed by 
summing the hydrodynamic stress over the surface elements of the sphere [solid line; Method 
1]4 or by summing the acceleration of the fluid over the domain [dashed line; Method 2; Eq. 
(S2)]. The dotted line corresponds to the analytical solution. 7 
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Supporting Fig. S3. Validation of the numerical method. Real (inertia) part (a) and 
imaginary (friction) part (b) of the scaled QCM-D force due to the adsorption of a sphere as a 
function of the scaled viscous penetration depth δ/a. Here, Δ𝐹 is the complex-valued QCM-D 
force amplitude [defined in Eq. (1) in the main text], ρF is the fluid mass density, ω is the 
angular frequency, 𝑈 is the complex-valued velocity amplitude of the quartz, a is the particle 
radius and δ is the viscous penetration depth. Comparison between results on relatively 
coarse grid (open circles) and a relatively fine grid (plusses). Parameters are given in Table 
S1. 
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Supporting Fig. S4. Vesicle size distribution obtained from dynamic light scattering 
(DLS). Vesicles are produced by mixing lipids with an aqueous buffer solution with 150 mM 
ionic strength and extruding the mixture through a membrane with a nominal pore size of 30, 
50 or 100 nm, referred to SUV1, SUV2 and SUV3, respectively. DLS data of SUV2 show no 
significant difference when dissolved in different ionic strengths.  

 

Supporting Movie S1. Fluid velocity vector field in xz-plane intersecting a sphere that is 
attached to an oscillating wall. The sphere radius a equals eight lattice spacings and the 
scaled penetration depth equals δ/a = 1.3. For clarity, only part of the computational domain 
is shown. The animation shows that, with each cycle, a vortex is formed and released from 
the top of the sphere.  
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