Supporting Information

A novel label-free strategy for pathogenic DNA detection based on metal ions binding-induced fluorescence quenching of graphitic carbon nitride nanosheets

Yan Xiao, Yuhao, Sheng, Jie Zhou, Miaomiao Chen, Wei Wen, Xiuhua Zhang*, Shengfu Wang

Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China

*Corresponding Authors:

E-mail: zhangxh@hubu.edu.cn

Tel.: +86-27-50865309. Fax: +86-27-88663043

Supplementary Tables and Figures

Names		Sequence (5'-3')	
Probe for HBV gene	Probe 1	CCCCCCTACCACATCATCCATATAACTGAA AGCCAACCCCCC	
	Probe 2	CCCCCCTACCACATCATCCATATAACTGAA ACCCCCC	
	Probe 3	CCCCCCTACCACATCATCCATATAACCCCC CC	
	Probe 4	TTTTTTACCACATCATCCATATAACTGAA AGCCAATTTTTT	
HBV gene		TTGGCTTTCAGTTATATGGATGATGTGGTA	
The single-base mismatched (SBM) strand*		TTGGCTTTCAGTTATAT <u>T</u> GATGATGTGGTA	
The non-complementary (NC) strand		ACTAAGGACTACAAGTACATTTCGAATTCT	

Table S1. Sequences of the oligonucleotides used in the experiments.

*The mismatched base is underlined.

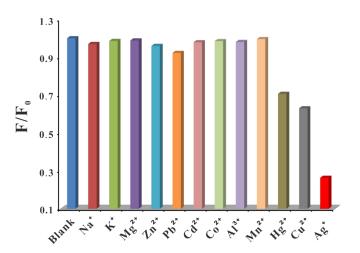
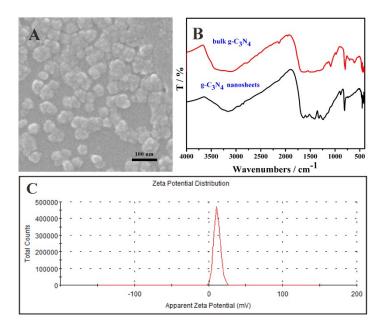
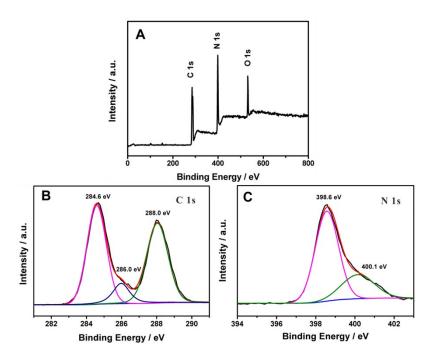
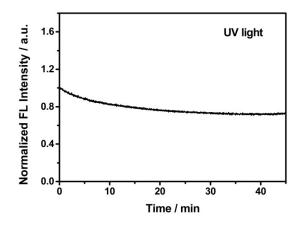
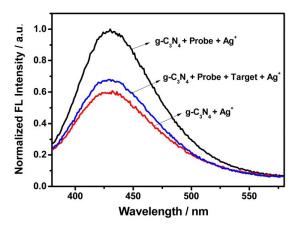
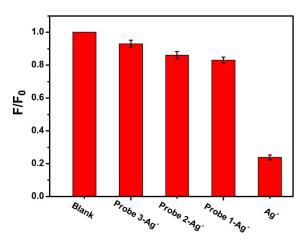




Fig. S1. Relative fluorescence intensity (F/F₀, where F and F₀ represent the emission intensity of g-C₃N₄ nanosheets in the presence and in the absence of the tested species, respectively) of the g-C₃N₄ nanosheets in the presence of different metal ions. The concentrations of all tested species were 5 μ M.

Fig. S2. (A) SEM image of $g-C_3N_4$ nanosheets. (B) FT-IR spectra of bulk $g-C_3N_4$ (red line) and $g-C_3N_4$ nanosheets (black line). (C) Zeta potential of the prepared $g-C_3N_4$ nanosheets.

Fig. S3. (A) X-ray photoelectron spectroscopy (XPS) survey spectrum of $g-C_3N_4$ nanosheets. (B, C) Expanded spectrum in the C 1s (b) and N 1s (c) region.

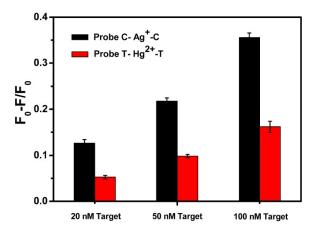

Fig. S4. Photostability of g-C₃N₄ nanosheets under continuous illumination by UV light.

Fig. S5. Fluorescence spectra of g-C₃N₄ nanosheets in the presence of different substances (black line: probe and Ag⁺; blue line: probe, target and Ag⁺; red line: Ag⁺).

Fig. S6. Relative fluorescence intensity (F/F₀, where F and F₀ represent the emission intensity of g-C₃N₄ nanosheets in the presence and in the absence of the tested species, respectively) of the g-C₃N₄ nanosheets after reaction with different C-Ag⁺-C probe DNAs and free Ag⁺ in the absence of target. The Ag⁺ concentrations of all tested species were 1 μ M.

Fig. S7. Assay of the target DNAs using different probe system (black: Probe 1 C-Ag⁺-C, red: Probe 4 T-Hg²⁺-T). (F_0 -F)/ F_0 , where F and F_0 represent the emission intensity of g-C₃N₄ nanosheets in the presence and in the absence of HBV gene, respectively.

Fig. S8. Optimization of experimental conditions of the concentration of silver ions $((F_0-F)/F_0)$, where F and F_0 represent the emission intensity of g-C₃N₄ nanosheets in the presence and in the absence of HBV gene, respectively). The concentration of the probe was 0.1 μ M.

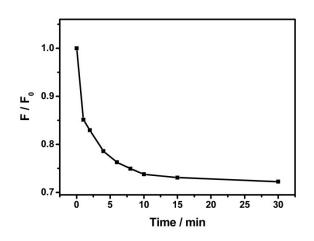


Fig. S9. Time dependence of the fluorescence quenching of 0.5 μ g/mL g-C₃N₄ nanosheets by 1 μ M silver ions.

Detection method	Strategy	Liner range	Detection limit	ref
Fluorescence	G-quadruplex/NMM	0-200 nM	5 nM	1
Fluorescence	QDs/BHQ	12-300 nM	4.03 nM	2
Fluorescence	FAM-DNA/CoOOH	1-50 nM	0.5 nM	3
Fluorescence	UCNPs/Au NPs	0-50 nM	0.25 nM	4
Fluorescence	DNA/Ag NCs	10-100 nM	3 nM	5
Fluorescence	Ag NCs/GO	10-100 nM	1.18 nM	6
Fluorescence	$g\text{-}C_3N_4\!/Ag^+$	2-100 nM	1.0 nM	this work

Table S2. Comparison of different fluorescence methods for DNA detection.

References

[1] J. T. Ren, J. H. Wang, J. Wang, N. W. Luedtke and E. K. Wang, *Biosens. Bioelectron.*, 2012, 31, 316-322.

[2] J. Z. Lv, Y. M. Miao, J. J. Yang, J. Qin, D. X. Li and G. Q. Yan, *Biosens. Bioelectron.*, 2017, 91, 560-565.

[3] A. H. Loo, Z. Sofer, D. Bouša, P. Ulbrich, A. Bonanni and M. Pumera, ACS Appl. Mater. Interfaces., 2016, 8, 1951-1957.

[4] H. Zhu, F. Lu, X. C. Wu and J. J. Zhu, Analyst, 2015, 140, 7622-7628.

[5] Y. Xiao, Z. J. Wu, K. -Y. Wong and Z. H. Liu, Chem. Commun., 2014, 50, 4849-4852.

[6] S. Q. Zhang, K. Wang, K. -B. Lia, W. Shi, W. -P. Jia, X. Y. Chen, T. Sun and D. -M. Hana, *Biosens*. *Bioelectron.*, 2017, 91, 374-379.