Supplementary Information

ProxyPhos sensors for the detection of negatively charged membranes.

Bronte I. Murcar-Evans^{1¶}, Aaron D. Cabral^{1¶}, Krimo Toutah¹, Elvin D. de Araujo¹, Angel Lai¹, Peter M. Macdonald¹, Angelika Berger-Becvar¹, Dziyana Kraskouskaya¹* and Patrick T. Gunning¹*

[¶]These authors contributed equally.

¹Department of Chemistry and Department of Chemical & Physical Sciences, University of Toronto, Mississauga, 3359 Mississauga Road North, Mississauga, Ontario, Canada, L5L 1C6

*Corresponding authors: diana.kraskouskaya@utoronto.ca, patrick.gunning@utoronto.ca

List of Figures

Figure S1. $\Delta\Delta$ FI _{exc/mon} . $\Delta\Delta$ FI _{exc/mon} of all library sensors with all vesicles (50 mM HEPES, pH 7.5, 5% DMSO. (A) $\Delta\Delta$ FI _{exc/mon} for vesicle concentrations from 0-40 μ M and (B) 0-200 μ M. In all experiments, [ProxyPhos library sensors] = 25 μ M; $\lambda_{exc/emi}$ = 350/476 nm and 350/376 nm 4
Figure S2. ΔFI_{exc} . ΔFI_{exc} of all library sensors and PSVue TM 380 with all vesicles (50 mM HEPES, pH 7.5, 5% DMSO). (A) ΔFI_{exc} for vesicle concentrations from 0-40 μ M and (B) 0-200 μ M. In all experiments, [ProxyPhos library sensors] = 25 μ M; $\lambda_{exc/emi}$ = 350/476 nm and [PSVue TM 380] = 1 μ M; $\lambda_{exc/emi}$ = 380/440 nm
Figure S3. $\Delta FI_{mon.}$ ΔFI_{mon} of all library sensors with all vesicles (50 mM HEPES, pH 7.5, 5% DMSO). (A) ΔFI_{mon} for vesicle concentrations from 0-40 μ M and (B) 0-200 μ M. In all experiments, [ProxyPhos library sensors] = 25 μ M; $\lambda_{exc/emi}$ = 350/376 nm
Figure S4. $\Delta\Delta$ FI _{mon} . $\Delta\Delta$ FI _{mon} of all library sensors with all vesicles (50 mM HEPES, pH 7.5, 5% DMSO). (A) $\Delta\Delta$ FI _{mon} for vesicle concentrations from 0-40 μ M and (B) 0-200 μ M. In all experiments, [ProxyPhos library sensors] = 25 μ M; $\lambda_{exc/emi}$ = 350/376 nm
Figure S5. $\Delta\Delta\Delta$ FI. $\Delta\Delta\Delta$ FI of all library sensors with all vesicles (50 mM HEPES, pH 7.5, 5% DMSO). (A) $\Delta\Delta\Delta$ FI for vesicle concentrations from 0-40 μ M and (B) 0-200 μ M. In all experiments, [ProxyPhos library sensors] = 25 μ M; $\lambda_{exc/emi}$ = 350/476 nm and 350/376 nm 12
Figure S6. Optimal Sensor Concentration and Incubation Time Determination. (A) ΔFI_{exc} of 12.5 μ M, 25 μ M or 50 μ M sensor 1 upon addition of PS vesicles (50 mM HEPES, pH 7.5, 10% DMSO). (B) Fluorescence intensity (FI _{exc}) of 25 μ M sensor 1 in the presence of 150 μ M PS

Figure S8. Short-chain lipid controls and phosphoserine. ΔFI_{exc} of all library sensors and PSVueTM380 with DHPC, DHPS and O-Phospho-L-serine (50 mM HEPES, pH 7.5, 5% DMSO). (A) ΔFI_{exc} for analyte concentrations from 0-40 μ M and (B) 0-200 μ M. In all experiments, [ProxyPhos library sensors] = 25 μ M; $\lambda_{exc/emi}$ = 350/476 nm and [PSVueTM380] = 1 μ M; $\lambda_{exc/emi}$ = 380/440 nm. 15

Figure S10. Excitation and emission spectra of all ProxyPhos library sensors. [ProxyPhos library sensors] = 50μ M in 50 mM HEPES, 10% DMSO, pH 7.5. All spectra recorded on Tecan Infinite M1000. 17

Figure S11. Apoptosis Flow Cytometry Buffer Controls. A) Flow cytometry results of untreated (left panel) and camptothecin (10 μ M) treated (right panel) MOLM-13 cells with HEPES buffer (50 mM HEPES, 75 mM NaCl, 1% BSA, 0.4% DMSO, pH 7.5) in PI channel. B) Flow cytometry results of untreated (left panel) and camptothecin (10 μ M) treated (right panel) MOLM-13 cells with HEPES buffer in DAPI channel. All samples analyzed on CytoFLEX S (BeckmanCoulter) using near UV (exc: 375 nm, emi: 450/45 nm) and blue (exc: 488 nm, emi: 585/42 nm)

Figure S13. Proof of Concept Apoptosis Experiement with PSVueTM380. Flow cytometry results of untreated (left panel) and camptothecin (10 μ M) treated (right panel) MOLM-13 cells stained with PSVueTM380 and prodium iodide (PI). Buffer: 50 mM HEPES, 75 mM NaCl, 1% BSA, 0.4% DMSO, pH 7.5. [PSVueTM380] = 90.9 μ M final. [PI] = 0.02 μ g/ μ L final. Samples analyzed

using Near UV (exc: 375 nm, emi: 450/45 nm) and blue (exc: 488 nm, emi: 585/42 nm)	
lasers	20

List of Supplementary Notes

Supplementary Note 1 List of synthetic phospholipid SUVs used	. 20
Supplementary Note 2 List of Equations	. 21
Supplementary Note 3 Synthesis and Characterization of PSVue [™] 380	. 21

Supplementary Figures:

Figure S1. $\Delta\Delta$ FI_{exc/mon}. $\Delta\Delta$ FI_{exc/mon} of all library sensors with all vesicles (50 mM HEPES, pH 7.5, 5% DMSO. (A) $\Delta\Delta$ FI_{exc/mon} for vesicle concentrations from 0-40 μ M and (B) 0-200 μ M. In all experiments, [ProxyPhos library sensors] = 25 μ M; $\lambda_{exc/emi}$ = 350/476 nm and 350/376 nm.

Figure S2. ΔFI_{exc} . ΔFI_{exc} of all library sensors and PSVueTM380 with all vesicles (50 mM HEPES, pH 7.5, 5% DMSO). (A) ΔFI_{exc} for vesicle concentrations from 0-40 μ M and (B) 0-200 μ M. In all experiments, [ProxyPhos library sensors] = 25 μ M; $\lambda_{exc/emi}$ = 350/476 nm and [PSVueTM380] = 1 μ M; $\lambda_{exc/emi}$ = 380/440 nm.

Sensor 4

Sensor 2

[Vesicle] (µM)

Sensor 1*

100

[Vesicle] (µM)

Sensor 5*

100 [Vesicle] (μM)

50

150

150

200

200

100 [Vesicle] (µM)

150

200

60-

40-

20

ΔFI

60

40

2

ΔFI

Figure S3. ΔFI_{mon} . ΔFI_{mon} of all library sensors with all vesicles (50 mM HEPES, pH 7.5, 5% DMSO). (A) ΔFI_{mon} for vesicle concentrations from 0-40 μ M and (B) 0-200 μ M. In all experiments, [ProxyPhos library sensors] = 25 μ M; $\lambda_{exc/emi}$ = 350/376 nm.

Figure S4. $\Delta\Delta$ FI_{mon.} $\Delta\Delta$ FI_{mon} of all library sensors with all vesicles (50 mM HEPES, pH 7.5, 5% DMSO). (A) $\Delta\Delta$ FI_{mon} for vesicle concentrations from 0-40 μ M and (B) 0-200 μ M. In all experiments, [ProxyPhos library sensors] = 25 μ M; $\lambda_{exc/emi}$ = 350/376 nm.

Figure S5. $\Delta\Delta\Delta$ FI. $\Delta\Delta\Delta$ FI of all library sensors with all vesicles (50 mM HEPES, pH 7.5, 5% DMSO). (A) $\Delta\Delta\Delta$ FI for vesicle concentrations from 0-40 μ M and (B) 0-200 μ M. In all experiments, [ProxyPhos library sensors] = 25 μ M; $\lambda_{exc/emi}$ = 350/476 nm and 350/376 nm.

Figure S6. Optimal Sensor Concentration and Incubation Time Determination. (A) Δ FI_{exc} of 12.5 μ M, 25 μ M or 50 μ M sensor 1 upon addition of PS vesicles (50 mM HEPES, pH 7.5, 10% DMSO). (B) Fluorescence intensity (FI_{exc}) of 25 μ M sensor 1 in the presence of 150 μ M PS vesicles, normalized to the intensity at time = 2 minutes (50 mM HEPES, pH 7.5, 5% DMSO). In both experiments, $\lambda_{ex/em} = 350/476$ nm.

Figure S7. $\Delta\Delta$ FI_{exc} for PS-containing vesicles. $\Delta\Delta$ FI_{exc} of all ProxyPhos library sensors and PSVueTM380 upon additon of 5, 25, 50 and 75% PS vesicles (50 mM HEPES, pH 7.5, 5% DMSO). In all experiments, [ProxyPhos library sensors] = 25 μ M; $\lambda_{ex/em} = 350/476$ nm and [PSVueTM380] = 1 μ M; $\lambda_{ex/em} = 380/440$ nm.

Figure S8. Short-chain lipid controls and phosphoserine. ΔFI_{exc} of all library sensors and PSVueTM380 with DHPC, DHPS and O-Phospho-L-serine (50 mM HEPES, pH 7.5, 5% DMSO). (A) ΔFI_{exc} for analyte concentrations from 0-40 μ M and (B) 0-200 μ M. In all experiments, [ProxyPhos library sensors] = 25 μ M; $\lambda_{exc/emi}$ = 350/476 nm and [PSVueTM380] = 1 μ M; $\lambda_{exc/emi}$ = 380/440 nm.

Figure S9. $\Delta\Delta$ FI_{exc} of Unmetallated ProxyPhos library sensors. $\Delta\Delta$ FI_{exc} of unmetallated sensors: 1*, 4* and 5* with all vesicles (50 mM HEPES, pH 7.5, 5% DMSO). (A) $\Delta\Delta$ FI_{exc} for vesicle concentrations from 0-40 μ M and (B) 0-200 μ M. In all experiments, [ProxyPhos library sensors] = 25 μ M; $\lambda_{exc/emi}$ = 350/476 nm.

Figure S10. Excitation and emission spectra for all ProxyPhos library sensors. [ProxyPhos library sensors] = 50μ M in 50 mM HEPES, 10% DMSO, pH 7.5. All spectra recorded on a Tecan Infinite M1000.

Figure S11. Apoptosis Flow Cytometry Buffer Controls. A) Flow cytometry results of untreated (left panel) and camptothecin (10 μ M) treated (right panel) MOLM-13 cells with HEPES buffer (50 mM HEPES, 75 mM NaCl, 1% BSA, 0.4% DMSO, pH 7.5) in PI channel. B) Flow cytometry results of untreated (left panel) and camptothecin (10 μ M) treated (right panel) MOLM-13 cells with HEPES buffer in DAPI channel. All samples analyzed on CytoFLEX S (BeckmanCoulter) using near UV (exc: 375 nm, emi: 450/45 nm) and blue (exc: 488 nm, emi: 585/42 nm) lasers.

Figure S12. Apoptosis Flow Cytometry Single Stains. A) Flow cytometry results of untreated (left panel) and camptothecin (10 μ M) treated (right panel) MOLM-13 cells with propidium iodide (0.02 μ g/ μ L) in PI channel. B) Flow cytometry results of untreated (left panel) and camptothecin (10 μ M) treated (right panel) MOLM-13 cells with sensor 3 (50 μ M final) (top) or PSVueTM380 (90.9 μ M) (bottom) in DAPI channel. For all samples. buffer: 50 mM HEPES, 75 mM NaCl, 1% BSA, 0.4% DMSO, pH 7.5. All samples analyzed on CytoFLEX S (BeckmanCoulter) using near UV (exc: 375 nm, emi: 450/45 nm) and blue (exc: 488 nm, emi: 585/42 nm) lasers.

19

Figure S13. Proof of Concept Apoptosis Experiement with PSVue[™]380. Flow cytometry results of untreated (left panel) and camptothecin (10 µM) treated (right panel) MOLM-13 cells stained with PSVue[™]380 and prodium iodide (PI). Buffer: 50 mM HEPES, 75 mM NaCl, 1% BSA, 0.4% DMSO, pH 7.5. [PSVue[™]380] = 90.9 µM final. [PI] = 0.02 µg/µL final. Samples analyzed using Near UV (exc: 375 nm, emi: 450/45 nm) and blue (exc: 488 nm, emi: 585/42 nm) lasers.

Supplementary Notes

Supplementary Note 1 List of synthetic phospholipid SUVs used

100% PC = 100% POPC PE = POPC:POPC 1:1 PG = POPC:POPG 1:1 5% PS = POPC:DOPS 95:5 25% PS = POPC:DOPS 3:1 PS = POPC:DOPS 1:1 75% PS = POPC:DOPS 1:3 PA = POPC:POPA 1:1 33% CL = POPC:TOCL 2:1 CL = POPC:TOCL 1:1 Supplementary Note 2 List of Equations

Equation S 1 $\Delta FI_{mon} = \frac{FI_{mon \ sensor + vesicle}}{FI_{mon \ sensor}}$ Equation S 2 $\Delta \Delta FI_{mon} = \frac{\Delta FI_{mon \ vesicle}}{\Delta FI_{mon \ 100\% \ PC}}$ Equation S 3 $\Delta \Delta \Delta FI = \frac{\Delta \Delta FI_{exc}}{\Delta \Delta FI_{mon}}$

Supplementary Note 3 Synthesis and Characterization of PSVue[™]380

Synthesis of 1,8-bis[(2,2-dipicolylamino)methyl]anthracene (B) (Unmetallated PSVueTM380):

9,10-bis(chloromethyl)anthracene A (100 mg, 0.363mmol, 1 eq) was dissolved in THF (1 mL) and cooled to 0 °C. 2,2'-dipicolylamine (0.131 ml, 0.726 mmol, 2 eq) and triethylamine (0.101 ml, 0.726 mmol, 2 eq) were dissolved in THF (1 mL) and added dropwise. The solution was stirred at room temperature for 16 h then filtered. The solvents were removed in vacuo. The residue was dissolved in DCM, washed with brine, dried over Na₂SO₄. After removal of the solvent in vacuo, the residue was purified by flash column chromatography (Hexanes/EtOAc) followed by recrystallization from EtOAc to give the desired product (98 mg, 45%) as a pale yellow powder.

¹H NMR (400 MHz, CDCl₃) δ 8.42 (d, J = 5 Hz, 2H), 8.39 (dd, J = 7 Hz, 4 Hz, 2H), 7.50 (td, J = 8 Hz, 2 Hz, 2H), 7.42 (d, J = 8 Hz, 2H), 7.28 (d, J = 8 Hz, 2H), 7.02 (t, J = 5 Hz, 2H), 4.63 (s, 2H), 3.86 (s, 4H). Data in accordance with the literature.¹

РSVue^{тм}**380 (С)**:

To a solution of 1,8-bis[(2,2-dipicolylamino)methyl]anthracene **B** (35 mg, 0.0583 mmol) in DCM (2.1 mL) was added dropwise 116 mM $Zn(NO_3)_2$ in MeOH (1 mL, 0.1166 mmol)). After stirring for 1h at room temperature, the precipitate was filtered and washed with DCM to give 1 (42 mg, quantitative) as a pale yellow powder.

¹H NMR (400 MHz, DMSO-d₆+D₂O) δ 8.66 (bs, 2H), 8.09 (bs, 2H), 8.00 (bs, 2H), 7.68 (bs, 2H), 7.57 (bs, 2H), 7.28 (bs, 2H), 4.94 (s, 4H), 4.10 (d, 8 Hz, 4H), 3.67 (d, 8 Hz, 4H). ¹³C NMR (125 MHz, DMSO-d₆+D₂O) δ 154.7, 148.7, 147.3, 141.8, 140.5, 131.9, 127.5, 126.9, 126.2, 125.9, 124.6, 58.0, 56.9, 55.8.

¹ J. AM. CHEM. SOC. 2002, 124, 6256-6258