SUPPORTING INFORMATION

Excellent Peroxidase Mimic Property of CuO/Pt Nanocomposites and

Its Application as a Ascorbic Acid Sensor

Xinhuan Wang,^{[-],a} Qiusen Han,^{[-],ab} Shuangfei Cai,^a Tian Wang,^{ab} Cui Qi,^a Rong Yang,^{*ab} Chen Wang^{*ab}

- a. CAS Center of Excellence for Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
- b. Sino-Danish College, University of Chinese Academy of Sciences, Sino-Danish Center for Education and Research, Beijing, 100190, P. R. China
- * Corresponding authors: yangr@nanoctr.cn, wangch@nanoctr.cn, wangch@nanoctr.
- [-] These authors contributed equally to this work.

Fig. S1. TEM image of CuO nanosheets

Fig. S2. TEM image of Pt nanoparticles

Fig. S3. XPS spectra of Cu 2p (A), O 1s (B) and Pt 4f (C)

Fig. S4. Zeta potential of CuO, Pt NPs and CuO/Pt nanocomposites

Fig. S5. Photos of CuO, Pt NPs and CuO/Pt nanocomposites in solution at pH 4.5

Fig. S6. Color changes after TMB treated with buffer, H_2O_2 alone, $CuO + H_2O_2$, Pt + H_2O_2 and $CuO/Pt + H_2O_2$ (concentrations of NPs and H_2O_2 are 2.5 ug·mL⁻¹ and 1 mM, respectively)

Fig. S7. Time dependent of absorbance changes at 652 nm in the presence of different concentration of CuO/Pt and H_2O_2

Fig. S8. Steady-state kinetic analysis using Michaelis-Menten model (A, B) and Lineweaver-Burk model (C, D) for CuO/Pt nanocomposites.

Catalyst	substrate	$K_m(mM)$	$V_{\rm max}$ (10 ⁻⁸ Ms ⁻¹)
CuO/Pt	TMB	0.413	14.6
	H_2O_2	2.887	8.85
HRP	TMB	0.434	10
	H_2O_2	3.7	8.71

Table S1. Comparison of the apparent Michaelis-Menten constant (Km) and maximum reaction rate (vmax) of CuO/Pt and HRP.

Fig. S9. Reaction between terephthalic acid (TA) and hydroxyl radicals generated by H_2O_2 , CuO/Pt and CuO/Pt + H_2O_2 .

Fig. S10. The catalytic mechanism scheme for H_2O_2 -CuO/Pt system.

Fig. S11. Absorption spectra of TMB in the presence of CuO/Pt+H₂O₂ (a), CuO/Pt +AA (b) and CuO/Pt+H₂O₂+AA (c). Inset is the corresponding photograph of the three samples.

Fig. S12. Time-dependent absorbance changes at 652 nm in the presence of different concentration of AA in the system of TMB-CuO/Pt-H₂O₂

Fig. S13. Reaction between terephthalic acid (TA) and hydroxyl radicals generated by $CuO/Pt + H_2O_2$, $CuO/Pt + H_2O_2 + AA$ (0.4 mM), $CuO/Pt + H_2O_2 + AA$ (0.8 mM)