Electronic Supporting Information

Facile Detection of Glucose in Human Serum Employing Silver-ion-guided Surface-enhanced Raman Spectroscopy Signal Amplification

Cui cui Fu,^{a,b} Sila Jin,^a Joohee Oh,^a Shu ping Xu,^c Young Mee Jung^a*

a Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chunchon 24341, Korea

b College of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Inorganic Special Functional Materials, Yangtze Normal University, Fuling, Chongqing 408003, China

c State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130012, China

1. Preparation and Modification of AgNPs

AgNPs were synthesized using Lee's method. AgNO₃ (0.018 g) was dissolved in 100 mL of water, and the solution was boiled under a vigorous stirring condition. A sodium citrate solution (1 w%, 2.0 mL) was added to the aforementioned solution. The mixed solution was then kept boiling for ca. 1 h. Next, the solution was allowed to cool to room temperature with continuous stirring. As characterized by TEM images, the average size of the Ag NPs was 50-60 nm. The UV–vis absorption spectra show that the maximum absorption wavelength of these Ag NPs was 422 nm and tat a red shift of 5 nm was observed after linking with cysteamine, demonstrating that the AgNPs were successfully modified with the cysteamine.

Figure S-1. (A) TEM image of the AgNPs. (B) UV–vis spectra of Ag NPs (black) and cysteaminefunctionalized AgNPs (red).

2. SERS measurements

SERS spectra from the sensor of AgNPs assembling on the surface of an Au wafer@4-ATP with and without the addition of 1 μ M Ag⁺ were recorded; the results are shown in Figure S-2.

Figure S-2. SERS spectra of 4-ATP from the sensor with and without the addition of 1 μM Ag^+ ions

Spectra analysis and vibrational band assignments

Figure S-3. SERS spectra from the constructed sensor with 1 mM Ag^+ ions.

Assignment	Raman shifts (cm ⁻¹)
γ (N-Ag-N)	339
β (CC)	629
β (CC)+ γ (C-S)	715
α (CC)+ γ (CC)	1005
β (C-H)	1074
Ring breathing/ C-H	1140
β (C-H)	1189
γ (CC)	1389
β (C-H)	1433
γ (CC)	1576

Table S-1. Vibrational frequencies and assignments

 α deformation, γ stretching, β bending

SERS measurements of 4-ATP at different Ag⁺ ion concentrations was carried out, as shown in Figure S-4.

Figure S-4. SERS spectra from the sensor with the addition of different concentrations of Ag⁺ ions