Electronic Supplementary Information

Acquiring Multiple Signals along with Reaction Time: Improving

Recognition Capability of Multidimensional Colorimetric Sensor

Array for Sensitive Protein Detection

Jiaoe Yang,^{a†} Liuying He,^{a†} Yuexiang Lu,^b Xinxin Gao,^a Feiyang Wang,^a Wenjie Jing,^a Yueying Liu^{a*}

^a Department of Chemistry, Capital Normal University, Xisanhuan North Rd. 105, Beijing, 100048, P.R. China

^b Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Beijing Key Lab of Radioactive Waste Treatment, Tsinghua University, Beijing, 100084, P. R. China

[†] Jiaoe Yang and Liuying He contributed equally to this work

*Corresponding Author: <u>yueyingliu@cnu.edu.cn</u>

Protein	MW (kDa)	pI	metal	Company	Purity
Bovine serum albumin (BSA)	66.3	4.8	No	Amresco	>98%
Cytochrome C (Cyt-C)	12	10.8	Yes	Amresco	>98%
Horseradish Peroxidase (HRP)	~40	~5	Yes	Sigma	>95%
Hemoglobin (Hem) from bovine blood	64.5	6.8	Yes	Sigma	>95%
Immunoglobulin G (IgG) from pig Blood	150	7.5	No	Sigma	>90%
Human serum albumin (HSA)	69.4	5.2	No	Sigma	>95%
myoglobin (Myo)	17	7.2	Yes	Sigma	>95%
Lysozyme (Lys)	14.4	11	No	Sigma	>95%
Transferrin (TRF) from human blood	~75	5.6	Yes	Sigma	>98%
Trypsin (Try) 1:250	24	10.5	No	Amresco	>95%

Table S1. Basic properties and manufacturers of proteins

Table S2. The sequences of DNA use in this work

DNA	Sequences from 5' to 3'
L1	5'-TAG TCC CGA TTT CTC ACG TCT CAA TGA ATC-3'
L2	5'-GGT TGG TGT GGT TGG -3'
L3	5'-CAC GTT TAT CCG TCC CTC CTA GTG GCG TG-3'
L4	5'-CCC CCC CCCCC CCC-3'
L5	5'-TTT TTT TTT TTT TTT-3
L6	5'-AAA AAA AAAAAA AAA-3'
L7	5'-AAA AAA AAAAAAAAAAAAAAAAAAAA
L8	5'-AAA AAA AAA AAA AAA AAA AAA AAA AAA AA
L9	5'-AAA AAC CCC CCCCCCCCCCCCCCCCCCCCCCCCCC
L10	5'-CCT CCT TCC TCC CGT GTC TGG GGC CGA CCG GCG CAT

 Table S3. Training matrix of the protein response patterns against the sensor array (L1-10 min, L2-10 min, L3-10 min, L1-15 min, L2-15 min, L3-15 min, L1-20 min, L2-20 min, and L3-20 min) at the concentration of 10 nM

	L1-10	L2-10	L3-10	L1-15	L2-15	L3-15	L1-20	L2-20	L3-20
	min								
Hem	2.44	2.17	2.27	2.13	2.02	1.28	1.72	1.23	0.61
Hem	2.40	2.33	2.08	1.99	1.80	1.38	1.64	1.32	0.70
Hem	2.49	2.34	2.11	2.09	1.89	1.34	1.66	1.30	0.66
Hem	2.44	2.30	2.03	2.08	1.88	1.29	1.73	1.29	0.60
Hem	2.33	2.23	2.05	2.13	1.82	1.38	1.55	1.48	0.57
Hem	2.40	2.31	2.21	1.91	1.90	1.25	1.57	1.22	0.57
BSA	2.36	2.08	1.30	1.96	1.74	0.66	1.49	1.17	0.27
BSA	2.36	2.24	1.14	1.93	1.70	0.63	1.49	1.13	0.24
BSA	2.33	2.26	1.25	1.91	1.69	0.55	1.45	1.12	0.22
BSA	2.30	2.12	1.23	1.84	1.66	0.51	1.41	1.11	0.22
BSA	2.27	2.18	1.29	1.80	1.63	0.60	1.31	1.05	0.21
BSA	2.27	2.08	1.13	1.75	1.62	0.59	1.13	1.04	0.20
HAS	2.43	2.70	1.62	2.06	2.31	0.85	1.57	1.86	0.24
HAS	2.43	2.65	1.58	2.00	2.27	0.97	1.44	1.74	0.39
HAS	2.31	2.62	1.59	1.93	2.23	0.90	1.45	1.69	0.29
HAS	2.28	2.61	1.53	1.92	2.22	0.92	1.53	1.69	0.29
HAS	2.22	2.49	1.43	1.85	2.18	0.74	1.39	1.56	0.42
HAS	2.22	2.49	1.43	1.84	2.16	0.77	1.37	1.52	0.23
Lys	2.88	2.75	2.16	2.69	2.40	1.58	2.21	1.79	0.86
Lys	3.03	2.63	2.33	2.58	2.33	1.37	2.29	1.76	0.85
Lys	2.95	2.68	2.28	2.61	2.30	1.49	2.26	1.76	0.81
Lys	2.93	2.66	2.26	2.52	2.28	1.49	2.22	1.69	0.79
Lys	3.08	2.69	2.34	2.52	2.22	1.58	2.24	1.65	0.79
Lys	2.87	2.62	2.14	2.64	2.22	1.35	2.21	1.63	0.78
EA	2.38	2.09	1.72	1.95	1.66	0.85	1.55	0.94	0.31
EA	2.38	2.08	1.72	1.95	1.61	0.85	1.53	0.93	0.29
EA	2.33	2.10	1.64	1.84	1.61	0.82	1.44	0.91	0.27
EA	2.33	2.04	1.63	1.84	1.56	0.75	1.38	0.82	0.25
EA	2.21	1.95	1.51	1.80	1.45	0.74	1.23	0.78	0.23
EA	2.22	1.94	1.58	1.76	1.45	0.72	1.09	0.74	0.22
Муо	2.08	2.11	1.77	1.59	1.67	1.08	1.18	0.88	0.39
Myo	2.06	2.20	1.76	1.58	1.68	1.09	1.16	0.86	0.39
Муо	2.03	2.16	1.73	1.56	1.67	1.04	1.12	0.86	0.38
Муо	2.01	2.15	1.72	1.53	1.66	1.03	1.11	0.85	0.39
Муо	1.99	2.04	1.59	1.49	1.56	0.90	1.03	0.83	0.35
Myo	1.99	1.98	1.56	1.47	1.55	0.97	1.02	0.82	0.35
HRP	2.07	2.01	1.80	1.60	1.60	1.16	1.07	0.88	0.48
HRP	2.05	2.10	1.80	1.58	1.56	1.17	1.05	0.87	0.47

HRP	2.05	1.99	1.76	1.56	1.48	1.15	1.07	0.85	0.45
HRP	2.01	1.99	1.75	1.52	1.48	1.15	1.06	0.90	0.45
HRP	1.98	1.86	1.66	1.46	1.44	1.04	1.00	0.88	0.36
HRP	1.97	1.86	1.62	1.41	1.45	1.01	0.95	0.89	0.34
TRF	2.08	2.07	1.86	1.59	1.59	1.22	1.18	0.72	0.54
TRF	2.06	2.06	1.83	1.59	1.50	1.21	1.15	0.81	0.53
TRF	2.03	2.00	1.81	1.57	1.49	1.18	1.13	0.77	0.50
TRF	2.03	2.00	1.78	1.55	1.48	1.12	1.11	0.77	0.46
TRF	1.97	1.89	1.66	1.48	1.40	1.02	1.23	0.78	0.48
TRF	1.91	1.82	1.63	1.48	1.36	1.03	1.21	0.72	0.44
Cyt-C	2.47	2.50	2.30	2.05	2.06	1.78	1.66	1.10	0.84
Cyt-C	2.47	2.50	2.29	2.02	2.02	1.74	1.67	1.04	0.88
Cyt-C	2.35	2.48	2.21	1.89	1.94	1.66	1.56	1.09	0.87
Cyt-C	2.31	2.46	2.19	1.89	1.94	1.62	1.44	1.08	0.87
Cyt-C	2.26	2.41	2.18	1.82	1.90	1.56	1.56	1.06	0.81
Cyt-C	2.32	2.29	2.18	1.83	1.83	1.56	1.52	1.03	0.80
IgG	2.49	2.87	2.60	2.30	2.40	2.30	1.90	1.48	1.57
IgG	2.70	2.68	2.62	2.27	2.39	2.30	1.89	1.49	1.55
IgG	2.70	2.78	2.66	2.25	2.38	2.27	1.86	1.48	1.49
IgG	2.63	2.84	2.56	2.22	2.32	2.16	1.82	1.50	1.46
IgG	2.57	2.76	2.44	2.16	2.24	2.13	1.73	1.46	1.47
IgG	2.64	2.67	2.46	2.15	2.24	2.11	1.72	1.49	1.46

Figure S1. The identification accuracy for ten proteins detection as a result of the contribution of response signals for different sensor elements at different reaction time

Figure S2. The identification accuracy for ten proteins detection as a result of the contribution of response signals for different DNA-AuNPs integrating three points of reaction time (10 min, 15 min, and 20 min)

Figure S3. The identification accuracy for ten proteins detection as a result of the contribution of response signals using by three receptors (L1, L2, and L3) at different time points

Figure S4. Array-based sensing of ten proteins at 10 nM: (A, B, and C) Canonical score plot from corresponding values using LDA with 95% confidence ellipses at only 10 min (A), 15 min (B), 20 min (C) 10 min and 15 min (D), 15 min and 20 min (E), 10 min and 20 min (F), respectively

Figure S5. (A) Canonical score plots for the discrimination of ten proteins at the 10 nM level by LDA with 95% confidence ellipses. (B) The partial enlarged view of red rectangle in (A), including Myo, HRP, and Hem

Sam-	L1-10	L.2-10	L3-10	L1-15	L2-15	L3-15	L1_20	L2_20	L3-20	Identifi-	Verifi
nles	min	min	min	min	min	min	min	min	min	cation	-
										cation	cation
1	2.38	2.08	1.72	1.95	1.61	0.85	1.53	0.93	0.29	EA	EA
2	2.36	2.24	1.29	1.93	1.70	0.63	1.49	1.13	0.24	BSA	BSA
3	2.70	2.84	2.62	2.27	2.39	2.30	1.89	1.49	1.55	IgG	IgG
4	2.05	2.10	1.80	1.58	1.56	1.17	1.05	0.87	0.47	HRP	HRP
5	2.49	2.31	2.11	2.09	1.89	1.34	1.66	1.30	0.66	Hem	Hem
6	3.08	2.75	2.34	2.69	2.40	1.58	2.21	1.79	0.86	Lys	Lys
7	2.43	2.70	1.62	2.06	2.31	0.92	1.57	1.86	0.42	HSA	HSA
8	1.99	1.98	1.56	1.47	1.55	0.97	1.02	0.82	0.35	Myo	Myo
9	2.06	2.06	1.83	1.59	1.50	1.21	1.15	0.81	0.53	TRF	TRF
10	2.22	1.94	1.58	1.76	1.45	0.72	1.08	0.74	0.22	EA	EA
11	2.63	2.76	2.56	2.22	2.32	2.16	1.82	1.50	1.46	IgG	IgG
12	2.06	2.20	1.76	1.58	1.68	1.09	1.16	0.86	0.39	Myo	Myo
13	2.31	2.46	2.19	1.89	1.94	1.62	1.44	1.08	0.87	Cyt-C	Cyt-C
14	2.27	2.08	1.13	1.75	1.62	0.59	1.13	1.04	0.24	BSA	BSA
15	2.01	1.99	1.75	1.52	1.48	1.15	1.06	0.90	0.45	HRP	HRP
16	2.43	2.70	1.62	2.06	2.31	0.92	1.57	1.86	0.42	HSA	HSA
17	2.87	2.62	2.14	2.52	2.22	1.35	2.21	1.63	0.78	Lys	Lys
18	2.57	2.68	2.44	2.16	2.24	2.13	1.73	1.46	1.47	IgG	IgG
19	1.97	1.89	1.66	1.48	1.40	1.02	1.23	0.78	0.48	TRF	TRF
20	2.33	2.23	2.05	1.99	1.82	1.28	1.55	1.23	0.57	Hem	Hem
21	2.26	2.29	2.18	1.83	1.83	1.56	1.52	1.03	0.80	Cyt-C	Cyt-C
22	2.95	2.68	2.28	2.61	2.30	1.49	2.26	1.76	0.81	Lys	Lys
23	2.30	2.12	1.23	1.84	1.66	0.51	1.41	1.11	0.24	BSA	BSA
24	2.03	2.00	1.78	1.55	1.48	1.12	1.11	0.77	0.46	TRF	TRF
25	2.22	1.94	1.58	1.76	1.45	0.72	1.09	0.74	0.22	EA	EA
26	1.97	1.86	1.62	1.41	1.45	1.01	0.95	0.89	0.34	HRP	HRP
27	2.44	2.34	2.27	2.13	2.02	1.38	1.72	1.48	0.61	Hem	Hem
28	2.47	2.50	2.29	2.02	2.02	1.74	1.67	1.04	0.88	Cyt-C	Cyt-C
29	2.01	2.15	1.72	1.53	1.66	1.03	1.11	0.85	0.39	Myo	Myo
30	2.31	2.62	1.59	1.93	2.23	0.90	1.45	1.69	0.29	HSA	HSA

Table S4. Identification of unknown protein samples at 10 nM using AuNPs-L1, AuNPs-L2, and AuNPs-L3 in different time

	I_1_10	L2_10	I 3_10	L1_15	L2_15	L3_15	L1_20	1.2_20	1.3_20
	min	L2-10 min	LJ-10 min	min	L2-13 min	LJ-13 min	min	L2-20 min	LJ-20 min
Hem	3.08	2 45	2 31	2 50	1 99	1 89	2 17	1 76	1 64
Hem	2.00	2.43	2.31	2.30	2.04	1.85	2.17	1.70	1.04
Hem	3.00	2.16	2.30	2.17	2.01	1.05	2.00	1.07	1.78
Hem	2.93	2.30	2.32	2.30	2.05	1.95	2.09	1.77	1.70
Hem	3.00	2.39	2.32	2.37	2.00	1.91	2.15	1.00	1.71
Hem	2.00	2.12	2.30	2.57	1.95	1.99	2.01	1.71	1.07
BSA	2.92	2.32	2.31	2.15	1.99	1.73	1 79	1.71	1.72
BSA	2.00	2.12	2.23	2.30	1.97	1.75	1.79	1.50	1.39
BSA	2.95	2.32	2.21	2.10	1.97	1.74	1.09	1.56	1.39
BSA	2.91	2.19	2.21	2.32	1.93	1.79	1.70	1.50	1 39
BSA	2.81	2.12	2.20	2.29	1.95	1.72	1.60	1.10	1.39
BSA	2.98	2.33	2.27	2.30	1.91	1.72	1.00	1.51	1.31
HAS	2.64	2.09	1.95	2.04	1 39	1.72	1.82	1.13	1.55
HAS	2.71	2.14	1.90	2.16	1.39	1.36	1.62	1.02	1.12
HAS	2.67	2.11	1.95	2.12	1.53	1.44	1.76	1.10	1.12
HAS	2.76	2.02	1.95	2.18	1.46	1.48	1.78	1.09	1.13
HAS	2.63	2.06	1.91	2.04	1.45	1.31	1.60	1.09	1.02
HAS	2.63	2.29	1.92	2.03	1.46	1.31	1.76	1.12	0.95
Lvs	3.18	2.99	2.89	2.79	2.64	2.47	2.57	2.48	2.31
Lys	3.13	2.88	2.83	2.95	2.50	2.47	2.53	2.47	2.31
Lys	3.14	2.92	2.86	2.97	2.62	2.41	2.50	2.45	2.31
Lys	3.13	2.88	2.86	2.82	2.57	2.43	2.48	2.43	2.29
Lys	3.17	2.98	2.87	2.86	2.63	2.50	2.45	2.36	2.26
Lys	3.13	2.82	2.79	2.78	2.47	2.41	2.44	2.30	2.26
EA	2.81	2.01	2.11	2.36	1.23	1.50	1.84	0.67	1.21
EA	2.84	2.03	2.19	2.38	1.25	1.55	1.94	0.72	1.22
EA	2.93	2.14	2.23	2.54	1.33	1.62	2.08	0.83	1.37
EA	2.82	2.02	2.17	2.36	1.25	1.50	1.88	0.72	1.22
EA	2.89	2.08	2.20	2.49	1.29	1.56	1.99	0.75	1.24
EA	2.91	2.11	2.21	2.53	1.30	1.57	2.08	0.80	1.33
Муо	2.13	2.09	2.09	1.81	1.57	1.53	1.41	1.16	1.04
Муо	2.35	2.19	2.15	2.01	1.68	1.57	1.52	1.28	1.13
Муо	2.36	2.19	2.16	2.01	1.69	1.58	1.62	1.29	1.13
Myo	2.20	2.10	2.11	1.90	1.64	1.54	1.42	1.26	1.08
Myo	2.22	2.02	2.02	1.81	1.48	1.52	1.41	1.07	1.04
Myo	2.23	2.12	2.14	1.92	1.67	1.57	1.46	1.28	1.08
HRP	2.26	2.94	2.23	1.79	2.38	1.78	1.68	2.21	1.51
HRP	2.28	3.09	2.27	1.86	2.56	1.81	1.78	2.31	1.64
HRP	2.15	2.87	2.21	1.71	2.41	1.72	1.61	2.22	1.41

Table S5. Training matrix of the protein response patterns against at the 50 nM level spiked in human urine

HRP	2.27	3.02	2.27	1.83	2.48	1.79	1.71	2.26	1.60
HRP	2.34	3.10	2.33	1.97	2.58	1.82	1.78	2.43	1.68
HRP	2.20	2.91	2.22	1.78	2.34	1.75	1.62	2.30	1.41
TRF	2.66	3.18	2.63	2.38	3.06	2.15	1.96	2.92	1.87
TRF	2.67	3.19	2.66	2.38	3.09	2.18	2.00	2.96	1.87
TRF	2.59	3.10	2.61	2.29	2.94	2.12	1.76	2.83	1.79
TRF	2.45	3.03	2.47	2.15	2.91	2.02	1.64	2.79	1.75
TRF	2.58	3.08	2.57	2.23	2.93	2.03	1.67	2.79	1.76
TRF	2.60	3.17	2.63	2.34	3.04	2.13	1.79	2.91	1.83
Cyt-C	2.02	2.58	1.83	1.61	2.14	1.27	1.34	1.72	0.82
Cyt-C	2.00	2.58	1.83	1.42	2.14	1.26	1.27	1.63	0.80
Cyt-C	1.91	2.52	1.82	1.36	2.01	1.24	1.18	1.62	0.80
Cyt-C	1.86	2.50	1.81	1.32	2.09	1.21	1.09	1.53	0.80
Cyt-C	2.09	2.77	1.91	1.65	2.20	1.32	1.45	1.70	0.96
Cyt-C	2.06	2.59	1.86	1.63	2.17	1.27	1.45	1.73	0.88
IgG	2.58	3.07	2.36	1.91	2.81	1.93	1.58	2.45	1.60
IgG	2.59	3.08	2.37	1.93	2.84	1.95	1.72	2.55	1.62
IgG	2.68	3.17	2.39	1.98	2.94	1.97	1.80	2.58	1.64
IgG	2.60	3.17	2.37	1.95	2.92	1.96	1.76	2.62	1.63
IgG	2.50	3.04	2.35	1.91	2.77	1.91	1.55	2.44	1.60
IgG	2.48	3.00	2.32	1.89	2.71	1.88	1.55	2.43	1.54
Urine	2.55	2.44	1.90	2.11	1.62	1.35	1.43	1.28	0.95
Urine	2.65	2.51	1.96	2.22	1.76	1.43	1.63	1.32	1.01
Urine	2.67	2.55	1.98	2.24	1.79	1.46	1.63	1.14	1.02
Urine	2.54	2.43	1.88	2.11	1.60	1.30	1.40	1.18	0.95
Urine	2.57	2.45	1.91	2.12	1.66	1.39	1.48	1.28	0.98
Urine	2.65	2.52	1.92	2.21	1.75	1.40	1.51	1.37	1.01

_

Figure S6. Fingerprints of 10 selected proteins (at final concentration of 50 nM) spiked in human serum based on the absorption values at 400 nm obtained from the colorimetric responses of three sensing elements at three time points

Sam-	L1-10	L2-10	L3-10	L1-15	L2-15	L3-15	L1-20	L2-20	L3-20	Identifi-	Verifi
ples	min	cation	- cation								
1	2.63	2.06	1.91	2.04	1.45	1.31	1.60	1.09	1.02	HSA	HSA
2	2.35	2.19	2.15	2.01	1.68	1.57	1.52	1.28	1.13	Myo	Myo
3	2.50	3.04	2.35	1.91	2.77	1.91	1.55	2.44	1.60	IgG	IgG
4	3.00	2.45	2.32	2.45	2.03	1.95	2.09	1.77	1.72	Hem	Hem
5	2.34	3.10	2.33	1.97	2.58	1.82	1.78	2.43	1.68	HRP	HRP
6	3.14	2.92	2.86	2.86	2.62	2.47	2.50	2.45	2.31	Lys	Lys
7	2.09	2.77	1.91	1.65	2.20	1.32	1.45	1.70	0.96	Cyt-C	Cyt-C
8	2.93	2.52	2.26	2.36	1.97	1.74	1.76	1.58	1.39	BSA	BSA
9	2.65	2.51	1.96	2.22	1.76	1.43	1.63	1.32	1.01	Urine	Urine
10	2.15	2.87	2.21	1.71	2.41	1.72	1.61	2.22	1.41	HRP	HRP
11	2.67	2.11	1.95	2.12	1.46	1.44	1.76	1.10	1.12	HSA	HSA
12	2.59	3.08	2.37	1.93	2.84	1.95	1.72	2.55	1.62	IgG	IgG
13	2.20	2.10	2.11	1.90	1.64	1.54	1.42	1.26	1.08	Myo	Myo
14	2.60	3.17	2.63	2.34	3.04	2.13	1.79	2.91	1.83	TRF	TRF
15	3.00	2.48	2.38	2.47	2.04	1.98	2.13	1.87	1.75	Hem	Hem
16	1.91	2.52	1.82	1.36	2.01	1.24	1.18	1.62	0.80	Cyt-C	Cyt-C
17	2.82	2.02	2.17	2.36	1.25	1.50	1.88	0.72	1.22	EA	EA
18	2.55	2.44	1.90	2.11	1.62	1.35	1.43	1.28	0.95	Urine	Urine
19	2.76	2.29	1.95	2.18	1.53	1.48	1.82	1.13	1.15	HSA	HSA
20	2.02	2.58	1.83	1.61	2.14	1.27	1.34	1.72	0.82	Cyt-C	Cyt-C
21	3.13	2.88	2.83	2.79	2.50	2.41	2.45	2.36	2.26	Lys	Lys
22	2.58	3.08	2.57	2.23	2.93	2.03	1.67	2.79	1.76	TRF	TRF
23	2.81	2.01	2.11	2.36	1.23	1.50	1.84	0.67	1.21	EA	EA
24	2.81	2.40	2.27	2.17	1.87	1.72	1.53	1.48	1.33	BSA	BSA
25	2.27	3.02	2.27	1.83	2.48	1.79	1.71	2.26	1.60	HRP	HRP
26	2.57	2.45	1.91	2.12	1.66	1.39	1.48	1.28	0.98	Urine	Urine
27	2.91	2.11	2.21	2.53	1.30	1.57	2.08	0.80	1.33	EA	EA
28	2.91	2.32	2.31	2.30	1.95	1.85	2.01	1.71	1.64	Hem	Hem
29	2.60	3.17	2.37	1.95	2.92	1.96	1.76	2.62	1.63	IgG	IgG
30	2.22	2.02	2.02	1.81	1.48	1.52	1.41	1.07	1.04	Myo	Myo
31	3.17	2.98	2.87	2.95	2.63	2.47	2.53	2.47	2.31	Lys	Lys
32	2.67	3.19	2.66	2.38	3.09	2.18	2.00	2.96	1.87	TRF	TRF
33	2.88	2.49	2.24	2.29	1.93	1.73	1.69	1.54	1.35	BSA	BSA

Table S6. Identification of unknown protein samples at 50 nM level spiked in human urineusing AuNPs-L1, AuNPs-L2, and AuNPs-L3 in different time

Concen	L1-10	L2-10	L3-10	L1-15	L2-15	L3-15	L1-20	L2-20	L3-20
-trations	min								
50 nM	2.59	2.13	2.88	2.18	1.58	2.56	1.76	1.29	2.31
50 nM	2.53	2.02	2.85	2.11	1.55	2.53	1.61	1.24	2.28
50 nM	2.49	2.01	2.84	2.03	1.48	2.50	1.59	1.21	2.27
50 nM	2.57	2.11	2.88	2.12	1.56	2.54	1.72	1.24	2.28
50 nM	2.68	2.17	2.82	2.13	1.60	2.62	1.78	1.23	2.33
50 nM	2.64	2.10	2.88	2.20	1.63	2.57	1.77	1.29	2.31
100 nM	2.74	2.16	2.85	2.34	1.84	2.57	2.07	1.59	2.37
100 nM	2.68	2.27	2.95	2.45	1.88	2.67	2.14	1.65	2.47
100 nM	2.71	2.12	2.85	2.34	1.79	2.56	2.06	1.47	2.33
100 nM	2.80	2.19	2.86	2.37	1.86	2.60	2.09	1.61	2.41
100 nM	2.90	2.20	2.88	2.45	1.87	2.65	2.10	1.62	2.46
100 nM	2.69	2.28	2.96	2.45	1.89	2.69	2.16	1.65	2.48
200 nM	3.04	3.00	3.02	2.76	2.88	2.85	2.46	2.49	2.71
200 nM	2.92	2.94	2.98	2.67	2.84	2.79	2.36	2.46	2.63
200 nM	2.92	2.90	2.96	2.65	2.83	2.77	2.33	2.45	2.61
200 nM	2.95	2.98	2.99	2.72	2.86	2.84	2.45	2.46	2.68
200 nM	2.95	2.95	2.99	2.71	2.85	2.82	2.41	2.46	2.66
200 nM	2.97	3.00	3.01	2.74	2.87	2.84	2.45	2.48	2.70
500 nM	3.21	3.24	3.17	2.98	3.16	3.06	2.73	2.99	3.01
500 nM	3.22	3.27	3.17	3.01	3.19	3.10	2.83	3.03	3.03
500 nM	3.14	3.23	3.13	2.96	3.15	3.06	2.71	2.91	2.94
500 nM	3.24	3.29	3.18	3.05	3.28	3.11	2.83	3.04	3.07
500 nM	3.12	3.15	3.12	2.94	3.11	3.03	2.68	2.93	2.94
500 nM	3.11	3.19	3.11	2.92	3.04	3.02	2.67	2.97	2.93
1000 nM	3.48	3.53	3.47	3.38	3.47	3.47	3.25	3.25	3.29
1000 nM	3.50	3.57	3.52	3.40	3.48	3.49	3.29	3.40	3.37
1000 nM	3.48	3.52	3.46	3.36	3.46	3.46	3.22	3.24	3.27
1000 nM	3.47	3.51	3.43	3.35	3.38	3.42	3.22	3.21	3.25
1000 nM	3.49	3.53	3.47	3.40	3.47	3.47	3.28	3.32	3.32
1000 nM	3.46	3.45	3.41	3.35	3.32	3.36	3.19	3.20	3.24

Table S7. Training matrix of the HSA response patterns at various concentrations in human urine

Figure S7. Fingerprint of HSA at various concentrations ranging from 50 nM to 1000 nM spiked in human urine.

Sam-	L1-10	L2-10	L3-10	L1-15	L2-15	L3-15	L1-20	L2-20	L3-20
ples	min								
100/0	3.00	2.99	2.85	2.66	2.62	2.55	2.34	1.76	2.34
100/0	2.99	2.97	2.85	2.64	2.57	2.50	2.33	1.76	2.29
100/0	3.02	3.01	2.89	2.69	2.63	2.58	2.40	1.78	2.34
100/0	3.04	3.03	2.89	2.71	2.64	2.58	2.45	1.82	2.37
100/0	3.00	2.86	2.81	2.60	2.50	2.48	2.32	1.70	2.25
100/0	3.00	2.86	2.80	2.60	2.47	2.47	2.27	1.69	2.24
80/20	2.82	2.86	2.68	2.45	2.30	2.31	2.11	1.59	2.13
80/20	2.85	2.97	2.75	2.55	2.37	2.40	2.14	1.50	2.18
80/20	2.83	2.88	2.72	2.47	2.22	2.35	2.12	1.41	2.14
80/20	2.86	2.96	2.80	2.58	2.48	2.41	2.14	1.59	2.19
80/20	2.83	2.89	2.72	2.47	2.39	2.37	2.13	1.43	2.14
80/20	2.84	2.96	2.72	2.53	2.33	2.37	2.13	1.49	2.15
60/40	2.77	2.76	2.67	2.48	2.19	2.37	2.07	1.33	2.08
60/40	2.87	2.85	2.78	2.51	2.21	2.40	2.15	1.49	2.12
60/40	2.88	2.86	2.78	2.52	2.25	2.40	2.17	1.42	2.14
60/40	2.77	2.79	2.68	2.50	2.13	2.39	2.10	1.39	2.11
60/40	2.77	2.84	2.76	2.50	2.15	2.39	2.11	1.45	2.12
60/40	2.76	2.79	2.65	2.44	2.13	2.30	2.02	1.31	2.07
40/60	2.74	2.65	2.60	2.31	1.98	2.26	1.99	1.39	1.97
40/60	2.64	2.58	2.56	2.25	1.98	2.16	1.94	1.38	1.92
40/60	2.60	2.55	2.54	2.24	1.96	2.16	1.92	1.37	1.92
40/60	2.73	2.63	2.58	2.30	1.94	2.21	1.99	1.32	1.96
40/60	2.69	2.61	2.56	2.25	1.91	2.19	1.94	1.40	1.94
40/60	2.72	2.61	2.57	2.26	1.92	2.20	1.98	1.30	1.94
20/80	2.51	2.27	2.29	2.01	1.62	2.11	1.75	1.17	1.44
20/80	2.53	2.30	2.38	2.11	1.67	2.15	1.77	1.20	1.47
20/80	2.52	2.27	2.36	2.08	1.65	2.14	1.76	1.19	1.48
20/80	2.59	2.40	2.46	2.19	1.68	2.19	1.84	1.22	1.59
20/80	2.54	2.30	2.44	2.12	1.67	2.18	1.78	1.21	1.56
20/80	2.56	2.36	2.44	2.14	1.68	2.18	1.84	1.21	1.54
0/100	2.13	2.14	2.08	1.66	1.48	1.70	1.47	1.12	1.28
0/100	2.09	2.06	1.99	1.62	1.45	1.64	1.32	1.09	1.18
0/100	2.12	2.11	2.05	1.63	1.46	1.69	1.45	1.10	1.24
0/100	2.18	2.10	2.09	1.69	1.53	1.72	1.48	1.13	1.29
0/100	2.08	2.02	1.93	1.60	1.39	1.61	1.26	1.02	1.12
0/100	2.11	2.09	2.00	1.62	1.46	1.65	1.41	1.09	1.18

Table S8. Fingerprint of HSA and Lys at different molar ratios (total protein concentration of50 nM in human urine)

Figure S8. Fingerprint of Lys and HSA at different molar ratios (total concentration of 50 nM) based on the absorption values at different time points obtained from the colorimetric sensor array