SUPPLEMENTARY INFORMATION

Simple Gd³⁺-Neu5*N*Ac complexation results in NMR chemical shift asymmetries of structurally equivalent complex-type *N*-glycan branches

Konstantin Usachev,^a Yoshiki Yamaguchi,^b Masayuki Takamatsu,^c Nataliya Pavlova,^a

Vladimir Klochkov,^a Almira Kurbangalieva,^d Takefumi Murase,^e Taiji Shimoda^e and

Katsunori Tanaka*^{c,d,e}

^a NMR Laboratory, Institute of Physics, Kazan Federal University, 18 Kremlevskaya street, Kazan 420008, Russia

^b Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN Global Research Cluster, RIKEN, Hirosawa, Wako-shi, Saitama 351-0198, Japan

^c Biofunctional Synthetic Chemistry Laboratory, RIKEN, Hirosawa Wako-shi, Saitama 351-0198, Japan

^d Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya street, Kazan 420008, Russia

^e GlycoTargeting Research Team, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan

*Correspondence: Dr. Katsunori Tanaka, E-mail: kotzenori@riken.jp

Experimental details

NMR spectroscopy: All measurements were acquired on a Bruker AVANCE-III HD 700 spectrometer (¹H frequency: 700.13 MHz) equipped with a 5 mm QCI (quadruple resonance ${}^{1}H/{}^{13}C/{}^{15}N/{}^{31}P$) CryoProbeTM. NMR samples contained 200 micrograms of *N*-glycan in 300 microliters D₂O in a 5 mm Shigemi NMR tube. The temperature was set to 293 K. Two-dimensional (2D) proton (COSY, TOCSY, NOESY) spectra were acquired in the phase-sensitive mode using the States-TPPI method for TOCSY and the QF mode for COSY experiments, using a time domain data point density of 512 t_1 x 4096 t_2 complex points and 64 transients per complex t_1 increment. 2D ¹H-¹³C HSQC, ¹H-¹³C HSQC-TOCSY, and ¹H-¹³C HMBC spectra were recorded over 512 (¹H) x 4096 (¹³C) complex points to obtain spectral widths of 13 (¹H) and 165 ppm (¹³C). The NOESY mixing time was 150 ms.

Spectra were processed by NMRPipe¹³ and analyzed using SPARKY. Proton and carbon resonance assignment for all residues were obtained using a combination of 2D COSY and TOCSY experiments for the ¹H signals, and by 2D ¹H-¹³C HSQC, ¹H-¹³C HSQC-TOCSY, and ¹H-¹³C HMBC for the ¹³C signals, as well as with reference to the chemical shift data obtained from undecasacharides reported previously by Sato and Kajihara.¹¹

The assignment of the Gd^{3+} interacting residues was performed based on the observed magnitude of the chemical shift changes. The carbon-bonded protons closest to the Gd^{3+} site generally provided the largest chemical shift changes, in ppm.

Figure S1. ¹H-¹³C HSQC NMR (¹H: 700 MHz) spectra of disialo-*N*-glycan labeled with DOTA, **1-DOTA** at 293K in D₂O solution.

Figure S2. ¹H-¹³C HSQC NMR (¹H: 700 MHz) spectra of disialo-*N*-glycan labeled with DOTA, 1-DOTA at 293K in D₂O solution after the addition of Gd^{3+} .

Functional group and its positions	¹ H (ppm)	¹³ C (ppm)	Functional group and its positions	¹ H (ppm)	¹³ C (ppm)
Asn H	8.34				
α	3.85	50.77			
β	2.79	34.88			
CloNA e e 1	4.05	77.07	Mon h 1	4.00	00.50
GICINAC-a I	4.95	11.91	$\frac{1}{2}$	4.99	99.30 76.20
2	5.75 2.62	33.33	$\frac{2}{2}$	4.07	/0.30
5	5.05 2.52	72.71	3	5.77	67.16
4	3.33	/8.49	4	3.30	07.10
5	5.40 2.72	/0.12	5	5.05 2.79	/3.40
0A AD	5.72 2.52	50.84	0A 6D	5.78 2.40	61.60
0B	5.52	39.84	00	5.49	01.00
GlcNAc-b 1	4.48	101.20	Gal-f 1	4.34	102.90
2	3.66	54.87	2	3.41	70.87
3	3.61	71.91	3	3.55	72.35
4	3.61	79.51	4	3.80	68.47
5	3.49	74.24	5	3.68	73.54
6A	3.75	59.86	6A	3.70	63.22
6B	3.63	59.86	6B	3.46	63.22
GlcNAc-e 1	4 42	99 51	Gal-i 1	4 31	103 50
2	3 62	54 74	2	3 40	68 35
3	3.62	71.91	$\frac{2}{3}$	3 53	72.35
4	3 53	80.61	4	3 79	68 47
5	3 46	74 56	5	3.69	73 54
5 6A	3.85	59.87	5 6A	3.69	63.22
6B	3 71	59.87	6B	3 49	63.22
	4.47	00.21	NewNIA e e 2e	2.54	20.00
GICNAC-I I	4.47	99.31	NeuNAc-g 5a	2.54	39.99
2	3.62	54.74	30	1.60	39.99
5	5.02 2.52	/1.91	4	3.33	08.14
4	3.33	80.01	5	3.08	51.85
5	3.46	/4.56	6	3.62	/2.68
6A (D	3.85	59.87	/	3.42	68.37 71.(2
0B	3./1	59.87	8	5.70	/1.03
			9a Oh	5.74 2.52	62.52
			90	5.52	02.32
Man-c 1	4.64	100.40	NeuNAc-k 3a	2.12	39.29
2	4.13	70.12	3b	1.71	39.29
3	3.65	80.44	4	3.90	67.22
4	3.48	74.34	5	3.79	52.14
5	3.80	68.47	6	3.60	72.28
6A	3.83	65.73	7	3.43	68.37
6B	3.66	65.73	8	3.86	70.13
			9a	3.78	60.48
			9b	3.70	60.48
Man-d 1	4.80	96.93			
2	3.99	76.17			
3	3.77	69.31			
4	3.37	67.19			
5	3.49	72.64			
6A	3.71	63.15			
6B	3.48	63.15			

Table S1. ¹H and ¹³C chemical shifts in ppm measured in D_2O for **1-DOTA** with Gd^{3+} at 293 K.

Figure S3. 1 H- 13 C HSQC NMR (1 H: 700 MHz) spectra of disialo-*N*-glycan 1 at 293K in D₂O solution.

Figure S4. ¹H-¹³C HSQC NMR (¹H: 700 MHz) spectra of disialo-*N*-glycan 1 at 293K in D_2O solution after the addition of Gd^{3+} .

Figure S5. ¹H NMR (700 MHz) spectra of the *N*-glycans at 293K in D₂O solution and after the addition of Gd^{3+} . (a) Disialo-*N*-glycan labeled with DOTA, **1-DOTA**; (b) disialo-*N*-glycan **1**; (c) asialo-*N*-glycan **2**.

Figure S6. ¹H NMR (700 MHz) spectra of the *N*-glycans at 293K in D₂O solution and after the addition of Gd^{3+} . (a) Tri-antenary sialo-*N*-glycan **3**; and (b) tetra-antenary sialo-*N*-glycan **4**.