Electronic Supplementary Information

UNDERSTANDING THE METABOLISM OF THE ANTICANCER DRUG TRIAPINE: ELECTROCHEMICAL OXIDATION, IN VITRO AND IN VIVO ANALYSIS USING LC-HRMS

Karla Pelivan¹, Lisa Frensemeier², Uwe Karst², Gunda Koellensperger³, Bjoern Bielec¹, Sonja Hager⁴, Petra Heffeter^{4,5}, Bernhard K. Keppler^{1,5} and Christian R. Kowol^{1,5}

¹ Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria

² Institute of Inorganic and Analytical Chemistry, University of Muenster, Corrensstrasse 28/30, 48149 Muenster, Germany

³ Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria

⁴ Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria

⁵ Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria

Scheme S1. Molecular structures of Triapine, Coti-2, DpC, 5-HP, Dp44mT and Bp4eT.

Scheme S2. Assignment of NMR data of M1.

¹H NMR (DMSO-*d*₆, 700.40 MHz, 298.2 K): δ 7.82 (dd, ²*J* = 4.4 Hz, ³*J* = 1.4 Hz, 1H, H_{py-2}), 7.36 (s, 2H, H₁₁), 7.19 (dd, ²*J* = 8.3 Hz, ³*J* = 1.4 Hz, 1H, H_{py-4}), 7.11 (dd, ²*J* = 4.4 Hz, ²*J* = 8.3 Hz, 1H, H_{py-3}), 6.77 (s, 2H, H₁₂) ppm. ¹³C NMR (DMSO-*d*₆, 176.13 MHz, 298.2 K): δ = 168.2 (C₁₀), 162.2 (C₇), 142.2 (C₅), 136.8 (C₂), 130.7 (C₆), 124.2 (C₃), 122.4 (C₄) ppm. ¹⁵N NMR (DMSO-*d*₆, 70.98 MHz, 298.2 K): δ = 312.4 (N₁), 303.3 (N₉), 66.8 (N₁₁, *J* = 89.0 Hz), 65.3 (N₁₂, *J* = 88.8 Hz) ppm (N₈ could not be observed because of the lack of a proton coupling).

Figure S1. LC/ESI-HRMS analysis of the amidrazone metabolite (*m/z* 164.0931) of Triapine in urine upon oxidative desulfuration.

Figure S2. The ratio of the peak area of the different metabolites relative to the peak area of Triapine in serum, liver, kidney and urine *in vivo* samples 15 min after Triapine treatment.

Figure S3. LC/ESI-HRMS analysis of *N*-glucuronides of Triapine (*m/z* 372.0972) in urine sample.

Figure S4. LC/ESI-HRMS analysis of N-glucuronides of M1 (m/z 370.0816) in urine sample.

Figure S5. Peak areas of *N*-glucuronides in comparison to Triapine in urine* 15 min after *in vivo* Triapine treatment.

Figure S6. The HRMS spectra obtained after co-incubations of A) Triapine and B) M1 with iron(III) nitrate.

Figure S7. Cytotoxicity of Triapine compared to M1 in the Triapine resistant subclones SW480/Tria and A2780/Tria after 72 h treatment. Viability was determined using MTT assay. The values given are the mean ± the standard deviation of triplicates from one representative experiment out of two.