1 Captions for Figures and Tables

Figure 1. Different forms of methylation. A) N-methylation (red), Omethylation (blue) and S-methylation (green) could occur on eight amino
acid residues. B) The 6 methylation forms occurred on Lys and Arg
residues.

Figure 2. Challenges for the analysis of methylproteome. A), The structure
alteration caused by methylation is much less significant when compared
with other modification forms like phosphorylation, acetylation and
glycosylation. B), Methylation introduces mass shifts identical to those of
some amino acid substitutions which makes the confident identification
difficult.

12 Figure 3. Strategy for the enrichment of methylpeptides using 13 conventional SCX or High-pH SCX. SCX separation conducted under 14 high-pH condition can alleviate the interference of histidine containing 15 peptides.

Figure 4. Different strategies of metabolic labeling for improving the
confidence in methylation identification. A), hM-SILAC. B), iMethylSILAC. C), MILS.

19

20 Table 1 Recent studies on large-scale analysis of methylproteome (>500
21 identified sites)

- 22 Table 2 The common characteristic ions and neutral losses for methylated
- 23 peptides
- 24

Figure 1. Different forms of methylation. A) N-methylation (red), O-methylation
(blue) and S-methylation (green) could occur on eight amino acid residues. B) The 6
methylation forms occurred on Lys and Arg residues.

	Methylation Phosphorylation	сн _з	Lacking efficier enrichment metho
	Phosphorylation	OH I	
	•		IMAC
	Acetylation		Immunoaffinity chromatography
	Glycosylation	•	HILIC
	Description	Monoiostopic mass	Composition
	Mono-Methylation	14.0157	II(2) C(1)
А	sp, Glu mass differential	14.0157	H(2) C(1)
(Jly, Ala mass differential	14.0157	H(2) C(1)
-		14.0157	H(2) C(1)
5	Ser, Thr mass differential	14.0157	
S Va	ser, Thr mass differential	14.0157	H(2) C(1)
S Va A	Ser, Thr mass differential I, Leu/Ile mass differential Asn, Gln mass differential	14.0157 14.0157	H(2) C(1) H(2) C(1)
S Va A	ser, Thr mass differential I, Leu/Ile mass differential Asn, Gln mass differential Di-Methylation	14.0157 14.0157 28.0313	H(2) C(1) H(2) C(1) H(4) C(2)
S Va A	ser, Thr mass differential I, Leu/Ile mass differential Asn, Gln mass differential Di-Methylation Ala, Val mass differential	14.0157 14.0157 28.0313 28.0313 28.0212	H(2) C(1) H(2) C(1) H(4) C(2) H(4) C(2) H(4) C(2)
S Va A C	Ser, Thr mass differential I, Leu/Ile mass differential Asn, Gln mass differential Di-Methylation Ala, Val mass differential Cys, Met mass differential	14.0157 14.0157 28.0313 28.0313 28.0313 28.0313	H(2) C(1) H(2) C(1) H(4) C(2) H(4) C(2) H(4) C(2) H(4) C(2)
S Va A C	 Ser, Thr mass differential I, Leu/Ile mass differential Asn, Gln mass differential Di-Methylation Ala, Val mass differential Cys, Met mass differential Tri-Methylation 	14.0157 14.0157 28.0313 28.0313 28.0313 42.0470	H(2) C(1) H(2) C(1) H(4) C(2) H(4) C(2) H(4) C(2) H(6) C(3) H(6) C(3) H(6) C(2) C(2) H(6) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2
S Va A	ser, Thr mass differential I, Leu/Ile mass differential Asn, Gln mass differential Di-Methylation	14.0157 14.0157 28.0313	H(2) C(1) H(2) C(1) H(4) C(2)
S Va A	ser, Thr mass differential I, Leu/Ile mass differential Asn, Gln mass differential Di-Methylation Ala, Val mass differential Avs. Met mass differential	14.0157 14.0157 28.0313 28.0313 28.0313	H(2) C(1) H(2) C(1) H(4) C(2) H(4) C(2) H(4) C(2)

Figure 2. Challenges for the analysis of methylproteome. A), The structure alteration
caused by methylation is much less significant when compared with other modification
forms like phosphorylation, acetylation and glycosylation. B), Methylation introduces

37 mass shifts identical to the mass differentials between many different amino acids38 which makes the confident identification difficult.

41 Figure 3. Strategies for the enrichment of methylpeptides using conventional SCX and

42 High-pH SCX. SCX separation conducted under high-pH condition can alleviate the

43 interference of histidine containing peptides.

·				
Organism	Enrichment method	Confidence control	Methylation sites	Ref.(year)
HeLa cells	Immunoaffinity purification at the peptide level coupled with SCX	Global target- decoy FDR estimates	323 Kme1 127 Kme2 102 Kme3	(44) (2013)
T. brucei	SCX fractionation	Global target- decoy FDR estimates	649 MMA 683 DMA	(57) (2013)
HCT116 cells	Immunoaffinity purification at the peptide level	Global target- decoy FDR estimates	1473 MMA 497 DMA 132 Kme1 35 Kme2 31 Kme3	(37) (2014)
НЕК 293Т	Immunoaffinity purification at the peptide level coupled with SCX	Separate target- decoy FDR estimates	1027 MMA	(38) (2014)
T cells	Immunoaffinity purification	iMethyl-SILAC	2400 MMA 465 DMA	(22) (2015)
HEK293	High-pH reversed- phase fractionation and Immunoaffinity purification	Global target- decoy FDR estimates (Separate target- decoy FDR estimates may be used as well)	8030 MMA	(29) (2016)
HeLa cells	SCX prefractionation with immunoaffinity purification	Separate target- decoy FDR estimates	1246 Kme1 59 Kme2 53 Kme3	(45) (2016)
ESCC cell line KYSE-150	SCX prefractionation with immunoaffinity purification	Separate target- decoy FDR estimates	1032 Kme1	(46) (2016)
HEK293	online SCX-RP-MS	Separate target- decoy FDR	77 MMA 163 DMA	(55) (2016)

49 Table 1 Recent studies on large-scale analysis of methylproteome (>500 identified

50 sites)

		estimates	305 Kme1	
			28 Kme2	
			66 Kme3	
			218 MMA	
	SCX based enrichment	hM-SILAC	587 DMA	
HepG2 cells			35 Kme1	(56) (2016)
			19 Kme2	
			28 Kme3	

Types of fragments	Name of ion or neutral loss	mass (Da)	Methylation type	ref. (year)
characteristic ion	Dimethylammonium	46.0657	aDMA	(78) (2003)
characteristic ion	Dimethylcarbodiimidium	71.0609	sDMA or aDMA	(78) (2003)
characteristic ion	Monomethylguanidinium	74.0718	MMA	(82) (2004)
characteristic ion	Immonium ion	98.0970	Kme1 or Kme2	(80) (2004)
				(81) (2008)
characteristic ion	Immonium ion	112.1126	Kme2	(80) (2004)
neutral loss	Monomethylamine	31.0422	MMA or sDMA	(79) (2004)
				(30) (2004)
neutral loss	Dimethylamine	45.0578	aDMA	(78) (2003)
neutral loss	Trimethylamine	59.0735	Kme3	(80) (2004)
neutral loss	Dimethylcarbodiimide	70.0531	sDMA	(78) (2003)
neutral loss	Monomethylguanidine	73.0640	MMA	(30) (2004)

Table 2 The common characteristic ions and neutral losses for methylated peptides