Supplementary Information

A highly selective and sensitive fluorescent nanosensor for dopamine based on formate bridged Tb(III) complex and silver nanoparticles

Huihui Li,^{‡a} Jin Shen,^{‡a} Rongwei Cui,^a Chongmei Sun,^a Yanyan Zhao,^a Xia Wu,^{*a} Na Li,^b and Bo Tang^{*b}

 ^a School of Chemistry and Chemical Engineering, Shandong University, Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, PR China
^b College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, PR China

Corresponding Authors

*E-mail: wux@sdu.edu.cn

*E-mail: tangb@sdnu.edu.cn.

Tel./ Fax: +86-531-88564464, +86-531-86180017.

Figure S1. TEM image (A) and UV-Vis spectrum (B) of AgNPs.

Figure S2. Effects of pH (A), HCOONa (B), Tb³⁺ (C) and AgNPs (D) on fluorescence intensities.

Figure S3. Fluorescence lifetime decay curves of (1) Tb³⁺-EP-AgNPs, (2) Tb³⁺- EP-HCOO⁻-AgNPs, (3) Tb³⁺-DA-AgNPs, (4) Tb³⁺- DA-HCOO⁻-AgNPs. Experimental conditions: 30 μ M Tb³⁺, 7.0 μ M AgNPs, 5.0 mM HCOO⁻, 10 μ M EP and DA for Abs and 0.10 μ M DA for FL in 0.01 M, HEPES-NaOH, pH =7.00 buffer solutions

Sensing material	Detection method	Linear range	LOD ^a (nM)	Refs
Ag ⁺ -TMB ^b	Colorimetry	0.1 -1.0 μM, 1.0 -20.0 μM	50	(1)
AuNPs/CPE°	Electrochemical	0.1 -25 μM	24	(2)
CdSe QDs ^d	Electrochemiluminescence	0.010 -3.0 μM	3.0	(3)
FB-AuNPs/NsNHS-AuNPs ^e	Absorbance	5 -100 nM	1.2	(4)
	Fluorescence	5 -100 nM	2.9	(4)
N-GQDs ^f	Fluorescence	1 -200 μM,	70	(5)
Conjugated polymer nanoparticles	Fluorescence	0.025 -10 μM	38.8	(6)
Polydopamine nanoparticles	Fluorescence	0.1 -20 μM	40	(7)
SiNP ^g	Fluorescence	0.005 -10.0 μM,	0.3	(8)
This method	Fluorescence	0.5 -100 nM	0.15	This work

Table S1. Comparison of the detection limit of DA with other proposed analytical methods

^a Limit of determination ; ^b 3,3',5,5'-tetramethylbenzidine

^c Gold nanoparticles chemically modified carbon paste electrode;

^d Mercaptopropionic acid and modium hexametaphosphate dual-stabilizers-capped CdSe quantum dots;

^e Fluorescein modified gold nanoparticles and Nile blue modified gold nanoparticles;

^fNitrogen-doped graphene quantum dots; ^gwater-soluble silicon nanoparticle with rich amidogens

References

- 1 S. Zhu, J. Yang, X.-e. Zhao, R. Kong, H. Wang and J. You, *Anal. Methods*, 2015, **7**, 6785-6790.
- 2 N. Baig and A. N. Kawde, *Rsc Adv.*, 2016, **6**, 80756-80765.
- 3 S. F. Liu, X. Zhang, Y. M. Yu and G. Z. Zou, Anal. Chem., 2014, 86, 2784-2788.
- 4 Z. H. Zeng, B. Cui, Y. Wang, C. J. Sun, X. Zhao and H. X. Cui, ACS Appl. Mater. Interface, 2015, 7, 16518-16524.
- 5 X. Chen, N. zheng, S. Chen and Q. Ma, *Anal. Methods*, 2017, **9**, 2246-2251.
- 6 C. G. Qian, S. Zhu, P. J. Feng, Y. L. Chen, J. C. Yu, X. Tang, Y. Liu and Q. D. Shen, *ACS Appl. Mater. Interface*, 2015, 7, 18581-18589.
- 7 A. Yildirim and M. Bayindir, *Anal. Chem.*, 2014, **86**, 5508-5512.
- 8 X. D. Zhang, X. K. Chen, S. Q. Kai, H. Y. Wang, J. J. Yang, F. G. Wu and Z. Chen, Anal. Chem., 2015, 87, 3360-3365.