Supporting Information

Quantification of green fluorescent protein-(GFP-) tagged membrane proteins by capillary gel electrophoresis

Azeem Danish[#], Sang-Yong Lee[#], and Christa E. Müller^{*}

PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany

Both authors contributed equally to this study

*Address correspondence to:

Prof. Dr. Christa E. Müller, Pharmazeutisches Institut, Pharmazeutische Chemie I, An der Immenburg 4, D-53121 Bonn, Germany. Phone: +49-228-73-2301. Fax: +49-228-73-2567. E-mail address: <u>christa.mueller@uni-bonn.de</u>

Table of contents

Table S1 Primers used for the project	p. 2
Table S2 Quantification of GFP-tagged proteins by CE-LIF	p. 3
Fig. S1 Calibration curve for GFP determined by CGE-LIF	p. 5
Fig. S2 Calibration curve for GFP determined in a fluorimeter	p. 5
Fig. S3 Separation of free GFP (standard) and SV2A-GFP in a cellular homogenate	p. 6
Fig. S4 Effect of SDS (1%) in the sample buffer on peak area of SV2A-GFP measured different incubation times	d after p. 6
Fig. S5 Effect of 1% SDS in sample buffer and semi-liquid gel on fluorescence intens free GFP and SV2A-GFP homogenate	sity of p. 7
Calculation of B_{max} values for SV2A-GFP from radioligand binding data	p. 8

Table S1 Primers used for the project

Primers for pcDNA4-hSV2A-GFP

Overlaps	Oligonucleotide (upper case = annealing sequence for PCR)	Anneals	F/R
pcDNA4-HindIII	agacccaagctggctagttaagcttACCATGGAAGAGGGCTTCCG	hSV2A	Fwd
pcDNA4-XhoI	agacccaagctggctagttaagcttACCATGGAAGAGGGCTTCCG	GFP	Rev

Primers for pcDNA4-hA_{2A}-GFP

Overlaps	Oligonucleotide (upper case = annealing sequence for PCR)	Anneals	F/R
pcDNA4	agacccaagctggctagttaagcttACCATGCCCATCATGGGC	hA _{2A}	Fwd
GFP	cgccccgtcgacGGACACTCCTGCTCCATC	hA _{2A}	Rev
hA _{2A}	aggagtgtccGTCGACGGGGGGGGGGGGGGGG	GFP	Fwd
pcDNA4	gttcgaagggccctctagactcgagTTACTTGTACAGCTCGTCCATGCCGAGAGTG	GFP	Rev

Primers for pcDNA4-mCx43

Overlaps	Oligonucleotide (upper case = annealing sequence for PCR)	Anneals	F/R
pCDNA4	agacccaagctggctagttaagcttACCATGGGTGACTGGAGC	mCx43	Fwd
eGFP	cgcccccgtcgacAATCTCCAGGTCATCAGGC	mCx43	Rev
mCx43	cctggagattGTCGACGGGGGGGGGGGGGGGG	GFP	Fwd
pcDNA4	gttcgaagggccctctagactcgagTTACTTGTACAGCTCGTCCATGCCGAGAGTG	GFP	Rev

Table S2 Ouantification of GFP-tagged proteins by CE-LIF ^a
--

SV2A-GFP	peak area	mg/ml	ng/ml	1:100 dilution (ng/ml)	nmol/l	pmol/ml	total amount (mg/ml)	pmol/mg
Test 1	69044	0.00016295	162.95492	16295.4921	0.1393	139.3	5.00	27.9
Test 2	60554	0.00014292	142.91716	14291.7158	0.1222	122.2	5.00	24.4
Test 3	69134	0.00016317	163.16734	16316.7335	0.1395	139.5	5.00	27.9
							mean	26.7

A _{2A} AR-GFP	peak area	mg/ml	ng/ml	1:20 dilution (ng/ml)	nmol/l	pmol/ml	total amount (mg/ml)	pmol/mg
Test 1	2011	0.00000475	4.74628	94.9257	1.3184119	1.32	12.0	0.110
Test 2	2412	0.00000569	5.69271	113.8541	1.5813075	1.58	12.0	0.132
Test 3	2245	0.00000530	5.29856	105.9712	1.4718223	1.47	12.0	0.123
							mean	0.121

Cx43-GFP	peak area	mg/ml	ng/ml	1:2 dilution (ng/ml)	nmol/l	pmol/ml	total amount (mg/ml)	pmol/mg
Test 1	2341	0.00000553	5.52514	11.0503	0.1579	0.158	4.70	0.0336
Test 2	3282	0.00000775	7.74605	15.4921	0.2213	0.221	4.70	0.0471
Test 3	2692	0.00000635	6.35355	12.7071	0.1815	0.182	4.70	0.0386
							mean	0.0398

^{*a*}Example of calculation (for test 1 of SV2A-GFP determination) is given on page 4.

Calculation example for test 1 of SV2A-GFP determination

Peak area of SV2A-GFP: 69044

Calibration curve: y = 423700000x - 0.00002178

69044 = 423700000x - 0.00002178

x = (69044 + 0.00002178) / 423700000

x = 69044.00002178 / 423700000

x = 0.00016295 mg / ml = 162.95492 ng / ml

1:100 dilution

SV2A-GFP (162.95492 ng / ml) x 100

= 16295.4921 ng / ml

Molecular weight of SV2A-GFP: 117 kDa = 117 x 1000 Da = 117000 Da = 117000 g/mol

(16295.4921 ng / ml) / (117000 g/mol)

 $= 0.1393 (ng/ml \ x \ mol/g)$

= **0.1393 nmol/ml**

= 139.3 pmol/ml

Total protein concentration according to the Bradford method: 5.00 mg/ml

The calculated concentration of SV2A in the cell homogenate:

(139 pmol/ml)/(5.00 mg/ml protein) = 139 pmol/5.00 mg protein

= 27.9 pmol/mg protein

Fig. S1 Calibration for GFP determined by CGE-LIF. Free GFP (in mg/ml) is plotted on the X-axis and the measured peak area is shown on the Y-axis. Data points are means \pm SD of three independent experiments. LOD: limit of detection; LOQ: limit of quantification.

Fig. S2 Calibration curve for GFP determined in a fluorimeter. The calibration curve was obtained by plotting the free GFP concentration in nM on the X-axis versus the corresponding fluorescence intensity on the Y-axis. The fluorescence of free GFP was measured in a black solid-bottom 96-well plate using a fluorescence plate reader (Mithras LB940, Berthold

Biotechnologies, Bad Wildbad, Germany). Data points represent means \pm SD of three independent measurements. LOD: limit of detection, LOQ: limit of quantification, RFU: relative fluorescence units.

Fig. S3 Separation of free GFP (standard) and SV2A-GFP in a cellular homogenate. RFU: relative fluorescence units.

Fig. S4 Effect of SDS (1%) in sample buffer on peak area of SV2A-GFP measured after different incubation times. RT: room temperature, RFU: relative fluorescence units.

Fig. S5 Effect of 1% SDS in sample buffer and semi-liquid gel on fluorescence intensity of free GFP and SV2A-GFP homogenate. Fluorescence intensity was measured using a microplate fluorimeter (Mithras LB940, Berthold Biotechnologies GmbH, Bad Wildbad, Germany) at room temperature using excitation (485/14 nm) and emission (535/25 nm) filters. Data is normalized versus respective controls (protein in Tris-HCl 50 mM, pH 7.4). Data shown are means \pm SEM of three individual experiments. Statistical analysis was performed by one-way-ANOVA with Dunnett's test for multiple comparisons, where control (Tris-HCl) was compared with sample buffer and semi-liquid gel. ****, p < 0.0001; **, p = 0.0060.

Calculation of B_{max} values for SV2A-GFP from radioligand binding data

 K_D and B_{max} calculations:

For homologous competition binding assays:

$$\mathbf{K}_{\mathrm{D}} = \mathbf{K}_{\mathrm{i}} = \mathbf{I}\mathbf{C}_{50} - \mathbf{R}\mathbf{L}$$

K_D: equilibrium dissociation constant (nM)
K_i: equilibrium inhibition constant (nM)
IC₅₀: half maximal inhibitory concentration (nM)
RL: measured concentration of radioligand (nM)

$K_D = 83.5 \text{ nM} - 2.0 \text{ nM} = 81.5 \text{ nM}$

 B_{max} (cpm) = (Top - Bottom) Specific Binding / (RL / (K_D + RL))

B_{max}: maximum number of binding sites (cpm)
Top: total binding of radioligand (cpm)
Bottom: non-specific binding of radioligand (cpm)

 $B_{max} (cpm) = (2839 - 437) / (2.0 / (81.5 + 2.0)) = 100283 cpm$

 B_{max} (fmol/mg) = B_{max} (cpm) * 100 / efficiency (%) x 2.2 x specific activity (Ci/mmol) x protein (mg)

Specific activity of $[^{3}H]BRV = 94$ Ci/mmol

Scintillation counter efficiency = 52%

Specific activity cpm/fmol = 108.5 cpm/fmol

Protein amount = 0.2 mg

 B_{max} (fmol/mg) = B_{max} (cpm) x 100 / efficiency (%) x 2.2 x specific activity (Ci/mmol) x protein (mg)

B_{max} (fmol/mg) = 100283 x 100 / (52 x 2.2 x 94 x 0.2) = 4663 fmol/mg protein