Derivation of Source Function $S(x, t)$:

The source function $S(x, t)$ quantitatively describes how the microalgae's source of inorganic C, i.e. HCO_{3}^{-}, is formed from atmospheric $\mathrm{CO}_{2(\mathrm{~g})}$. In a first step, Henry's law describes a thermodynamic equilibrium between gas and aqueous phase and thus determines the quantity of CO_{2} that dissolves into seawater $\left(\mathrm{CO}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(a q)}\right)$. From $\mathrm{CO}_{2(a q)}$, carbonic acid $\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)$ forms which partially dissociates in water resulting in bicarbonate $\left(\mathrm{HCO}_{3}^{-}\right)$which in turn produces a small quantity of carbonate ions $\left(\mathrm{CO}_{3}^{2-}\right)(1)$. As will be discussed in the remainder, the most relevant product formed in this sequence of reactions is HCO_{3}^{-}.
$\mathrm{CO}_{2(\mathrm{~g})} \leftrightarrow \mathrm{CO}_{2(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{2} \mathrm{CO}_{3} \stackrel{\boxed{ } k_{1}}{\leftrightarrow} \mathrm{HCO}_{3}^{-}+\mathrm{H}^{+} \stackrel{\boxed{ } k_{2}}{\leftrightarrow} \mathrm{CO}_{3}^{2-}+2 \mathrm{H}^{+}$

Quantitating the transformation of $\mathrm{CO}_{2}(\mathrm{~g})$ into HCO_{3}^{-}requires a detailed analysis. First, the partial pressure of CO_{2} in the atmosphere (in atm) needs to be determined:
$p \mathrm{CO}_{2}=x \mathrm{CO}_{2} \cdot\left(\mathrm{P}-\mathrm{pH}_{2} \mathrm{O}\right) \cdot 10^{-6}$

In (2), $x \mathrm{CO}_{2}$ represents is the mole fraction of CO_{2} in the atmosphere and P the total atmospheric pressure in atm (used here: 1atm). Since, CO_{2} exchange occurs at the air-water interface, saturation vapor pressure of water, $\mathrm{pH}_{2} \mathrm{O}(\mathrm{atm})$ needs to be subtracted from the total pressure. Saturation water vapor pressure can be calculated by ${ }^{1}$:
$\ln \left(\mathrm{pH}_{2} \mathrm{O}\right)=24.4543-\frac{6745.09}{T}-4.8489 \cdot \ln \left(\frac{T}{100}\right)-0.00054 \cdot S$

In (3), T represents the temperature of the air-water interface in Kelvin and S denotes the seawater salinity in g / kg. Since, CO_{2} is not an ideal gas, its fugacity fCO_{2} (in atm) needs to be calculated from its partial pressure and ideal gas constant $R 2$:
$f \mathrm{CO}_{2}=p \mathrm{CO}_{2} \cdot \exp \left(P \cdot \frac{B+2 \delta}{R \cdot T}\right)$

For calculating $\mathrm{fCO}_{2}(4), B$ and δ (both in $\mathrm{m}^{3} \cdot \mathrm{~mol}^{-1}$) are required which denote the virial coefficient and the cross-virial coefficient, respectively ${ }^{3}$:
$B=\left(-1636.75+12.0408 \cdot T-3.27957 \cdot 10^{-2} \cdot T^{2}+3.16528 \cdot 10^{-5} \cdot T^{3}\right) \cdot 10^{-6}$
$\delta=(57.7-0.118 \cdot T) \cdot 10^{-6}$
After calculating fugacity, the CO_{2} concentration ($\mathrm{mol} / \mathrm{kg}$) dissolved in seawater can be calculated from $\left[\mathrm{CO}_{2}\right]=K_{0} \cdot \mathrm{fCO}_{2}$ with K_{0} (mol/kg-atm) denoting CO_{2} solubility coefficient which has been determined in ${ }^{3}$ as:

$$
\mathrm{K}_{0}=10^{-6} \cdot \exp \left\{\frac{9345.17}{T}-60.2409+23.3585 \cdot \ln \left(\frac{T}{100}\right)+S \cdot(0.023\right.
$$

Dissolved $\mathrm{CO}_{2(a q)}$ is in equilibrium with HCO_{3}^{-}and CO_{3}^{2-} according to:

$$
\begin{gathered}
\mathrm{CO}_{2(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O} \stackrel{\boxed{ } k_{1}}{\leftrightarrow} \mathrm{HCO}_{3}^{-}+\mathrm{H}^{+} \\
\mathrm{HCO}_{3}^{-} \stackrel{\square k_{2}}{\leftrightarrow} \mathrm{CO}_{3}^{2-}+\mathrm{H}^{+}
\end{gathered}
$$

The equilibrium constants $k_{1}=\frac{\left[\mathrm{HCO}_{3}^{-}\right] \cdot\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CO}_{2}\right]}$ and $k_{2}=\frac{\left[\mathrm{CO}_{3}^{2-}\right] \cdot\left[\mathrm{H}^{+}\right]}{\left[\mathrm{HCO}_{3}^{-}\right]}$are temperature $T(=296 \mathrm{~K})$ and salinity $S=35 \frac{g \text { salt }}{\mathrm{kg} \text { seawater }}$ dependent functions (in $\mathrm{mol} / \mathrm{kg}$) and have been determined in ${ }^{4}$ as:

$$
\begin{aligned}
& \ln \left(k_{1}\right)=2.83655-\frac{2307.1266}{T}-1.5529413 \cdot \ln (T)-\left(0.207608410+\frac{4.048}{T}\right. \\
& \ln (1-0.001005 \cdot S) \\
& \ln \left(k_{2}\right)=-9.226508-\frac{3351.6106}{T}-0.2005743 \cdot \ln (T)-\left(0.1069018+\frac{23.97}{T}\right. \\
& \ln (1-0.001005 \cdot S)
\end{aligned}
$$

$\left[H^{+}\right]$(in $\mathrm{mol} / \mathrm{kg}$) can be determined from the $p H(=8.20$; buffered) and density of the seawater solution $\left(=1.026 \frac{\mathrm{~kg}}{\mathrm{~L}}\right)$. With $\left[\mathrm{CO}_{2}\right],\left[\mathrm{H}^{+}\right]$, and k_{1} known, $\left[\mathrm{HCO}_{3}^{-}\right]$(in mol/kg) can be calculated:
$\left[\mathrm{HCO}_{3}^{-}\right]=\frac{k_{1} \cdot\left[\mathrm{CO}_{2}\right]}{\left[\mathrm{H}^{+}\right]}$
For completeness purposes, the carbonate ion concentration can be determined, too:
$\left[\mathrm{CO}_{3}^{2-}\right]=\frac{k_{2} \cdot\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}^{+}\right]}$
Finally, gravimetric concentration units ($\mathrm{mol} / \mathrm{kg}$) are converted to millimolar (mM) through the density of seawater (kg/L) for this modeling application.

References:

1. R. F. Weiss and B. A. Price, Marine Chemistry, 1980, 8, 347-359.
2. A. Kortzinger, L. Mintrop and J. C. Duinker, Journal of Geophysical Research, 1998, 103, 9.
3. R. F. Weiss, Marine Chemistry, 1974, 2, 203-215.
4. R. N. Roy, L. N. Roy, K. M. Vogel, C. Porter-Moore, T. Pearson, C. E. Good, F. J. Millero and D. M. Campbell, Marine Chemistry, 1993, 44, 249-267.
