A Luminescent and Colorimetric Probe Based on Functionalization of

Gold Nanoparticles by Ruthenium(II) Complexes for Heparin

Detection

Fig. S1 Emission spectra of the binding of $Ru(phen)_3Cl_2(0.8 \ \mu M)$ to different concentrations of heparin (0-10⁻³M) (in buffer solution).

0µL 100µL 200µL 300µL 400µL 500µL 600µL 700µL 800µL 900µL 1000µL 1200µL 1400µL

1600µL 1800µL 2000µL 2200µL 2400µL

Increase the concentration of AuNPs

≽

Fig. S2 Images of mixtures contain $[Ru(phen)_2np]^{2+}(0.8 \ \mu\text{M})$ and AuNPs (0-2400 $\mu\text{L})$.

Fig. S3 Stern-Volmer plot of quenching of 0.8 μ M [Ru(phen)₂np]²⁺ by AuNPs. Inset shows linear range in the low quencher concentration regime.

Fig. S4 Decay curves of $[Ru(phen)_2np]^{2+}$ (a) and Au-Ru (b) excited by EPL405 at room temperature (no deoxygenation).

Fig. S5 Plot of A_{520}/A_{664} values versus the concentrations of heparin in 5 mM Tris-HCl (pH 7.4) buffer solution. The different concentrations of heparin were added to $[Ru(phen)_2np]^{2+}(0.8 \ \mu M)$ followed by addition of AuNPs (700 μ L).

Fig. S6 UV-vis absorption spectra of the binding of $[Ru(phen)_2np]^{2+}$ (0.8 μ M) to different concentrations of heparin (0-0.8 μ M), followed by addition of AuNPs (700 μ L). Inset: Images of AuNPs and the mixtures contain $[Ru(phen)_2np]^{2+}$ (0.8 μ M), AuNPs(700 μ L) and heparin (0-0.6 μ M) (in FBS samples).

Method	Linear range	Detection limit		Ref.
Colorimetry	0 -6.7 U/mL	0.01 U/mL	water	[1]
	0 -2.2 U/mL	0.15 U/mL	10% serum	
Colorimetry	0.6-10 µg/mL	0.6 μg/mL	buffer	[2]
,		10,		
Fluorometry	5–30 μM	0.157 μM	buffer	[3]
	0-22 5 uM	0.53 μM	5% serum	
	0 22.5 μινι		576 Serum	
Fluorometry	4-1.6 μg/mL	0.0013 μg/mL	buffer	[4]
Fluorometry	0.002 [–] 1.4 μg/mL	0.67 ng/mL	buffer	[5]
Colorimetry	0.06-0.36 μg/mL	3.0 ng/mL	buffer	[6]
	0-0.8 μg/mL	1.7 ng/mL	0.2‰ serum	
Colorimetry	0.09 μg/mL- 3.12 μg/mL	0.03 μg/mL	buffer	[7]
Fluorometry	10-100 nM	8.2 nM	buffer	[8]
Fluorometry	0.4-100 μM	0.22 μM	buffer	Present work
Colorometry(nak	0.01-0.2 μΜ	0.02 μΜ	buffer	Present work
ed-eye)				
Fluorometry	0.1-6 μ Μ	0.024 μ M	1% serum	Present work

Table S1. Comparisons of various typical methods for heparin detection.

References for supporting information

[1] R. Zhan, Z. Fang and B. J. Liu, Analytical chemistry, 2009, 82, 1326-1333.

[2] B. K. Jena and C. R. Raj, J. Biosensors and Bioelectronics, 2008, 23, 1285-1290.

[3] Q. Dai, W. Liu, X. Zhuang, J. Wu, H. Zhang and P. Wang, J. Analytical chemistry, 2011, 83, 6559-6564.

[4] J. Zhao, Y. Yi, N. Mi, B. Yin, M. Wei, Q. Chen, H. Li, Y. Zhang and S. Yao, J. Talanta, 2013, **116**, 951-957.

[5] X. Peng, Q. Long, H. Li, Y. Zhang and S.Yao, J. Sensors and Actuators B: Chemical, 2015, 213,131-138.

[6] X. Fu, L. Chen and J. Li, J. Analyst, 2012, 137, 3653-3658.

[7] R. Cao and B. Li, J. Chemical Communications, 2011, 47, 2865-2867.

[8] R. Wang, X. Wang, Y. Sun, Michrochim Acta, 2017, **184**, 187-193.