Towards Single Egg Toxicity Screening Using Microcoil NMR

I. Fugariu, A. R. Soong, D. Lane, M. Fey, W. Maas, F. Vincent, A. Beck, D. Schmidig, B. Treanor and A. J. Simpson

Supporting Information

Experimental section:

A silicone-based caulking tape (item #: SC13121, Home Depot) was utilized to secure the sample holder to the coil and a second silicone-based liquid tape (item #: LTB-400, Liquid Tape, Gardner Bender) was added to ensure a water tight seal. The liquid tape dried in under two minutes and both sealants were easily removed with lukewarm water after completion of experiments.

Figure S1: A water drop, administered via a 2 mL Pasteur pipette is held vertically over a 1000 μm planar microcoil by surface tension.

Figure S2: Set-up of the lab-modified sample holder on a 1000 μm coil. The sample holder was secured to the coil via two silicone-based adhesives described above.

Figure S3. A 1D ¹H zg-presaturation experiment was acquired on a 100 mM sucrose analyzed on the A. 50 μ m, B. 100 μ m, C. 500 μ m planar microcoils and on the D. 5-mm saddle microcoil. The line-shape on the saddle coil is superior (in part due to Topshim 3D that could be used on the 5-mm coil) to that on the microcoils, however there is little advantage in using microcoils when the sample is present in excess.

Figure S4. The mass sensitivity (SNR/V_{sample} in pL) from 256 scans of a pre-saturation experiment was plotted against the log of the excited volume based on the coil inner diameter (I.D.) and outer diameter (O.D.) at 90% RF threshold, 50% RF threshold and total volume. The relationship based on the I.D. are displayed in a), b) and c, while the O.D. are observed in d), e) and f).

Table S1A. SNR for 100 mM sucrose using various microcoils with different I.D's. (20-1000 μ m) and a 5-mm saddle coil. Calculations are based on 90%, 50%, and total RF field lines previously reported by Massin et al.¹

Coil size I.D.	SNR	Mass sensitivity vs 5mm	Mass sensitivity vs 5mm	Mass sensitivity vs
	(256 scans)	using volume at	using volume at	5mm using total
		90% RF field (detectable	50% RF field	volume the RF
		volume in nL)	(detectable volume in nL)	penetrates
				(detectable volume in
				nL)
20 µm	76 ± 4	670 867 (0.00130)	268 348 (0.00310)	134 174 (0.00630)
50	136 ± 6	76 832 (0.0196)	30 733 (0.0491)	15 366 (0.0982)
100	296 ± 16	20 902 (0.157)	8 361 (0.393)	4 181 (0.785)
500	2281± 9	1 289 (19.6)	515 (49.1)	258 (98.2)
1000	3110 ± 17	220 (157)	88 (393)	44 (785)
5 mm	27 045 ± 12	1 (300 000)	1 (300 000)	1 (300 000)

Table S1B. SNR for 100 mM sucrose using various microcoils with different O.D's. (130-1130 μ m) and a 5-mm saddle coil. Calculations are based on 90%, 50%, and total RF field lines previously reported by Massin et al.¹

Coil size	SNR	Mass sensitivity vs 5mm	Mass sensitivity vs 5mm	Mass sensitivity vs
O.D. (I.D.)	(256 scans)	using volume at	using volume at	5mm using total
		90% RF field (detectable	50% RF field	volume the RF
		volume in nL)	(detectable volume in nL)	penetrates
				(detectable volume in
				nL)
130 µm (20)	76 ± 4	15 879 (0.0531)	6 351 (0.133)	3 176 (0.266)
185 (50)	136 ± 6	5 612 (0.269)	2 245 (0.672)	1 122 (1.34)
260 (100)	206 ± 16	2,002,(1,06)	1 227 (2 66)	C19 (E 21)
200 (100)	296 ± 16	3 092 (1.08)	1 237 (2.00)	010 (5.51)
790 (500)	2281± 9	516 (49.0)	207 (122)	103 (245)
1130 (1000)	3110 ± 17	172 (200)	69 (501)	34 (1 003)
5 mm	27 045 ± 12	1 (300 000)	1 (300 000)	1 (300 000)

Table S2A.a. Data acquired for a *Cypselurus poecilopterus* egg on planar microcoils (50, 500 μ m I.D.) and 5-mm saddle coil. Calculations are based on the volume within the 90% RF field lines.¹

Coil	Actual	SNR normalized	Volume of sample	Filling	% of the sample	Mass sensitivity
size	SNR	to	observed (V _{sample} , nL) ^I	factor of	observed ^{III}	vs 5mm
I.D.	(16 scans)	256 scans		the coil ^{II}		
50	178 ± 3	712 ± 3	0.0196	100% of	0.00047%	158 222
				the coil is		
				filled		
500	1831± 21	7324 ± 21	19.6	100	0.47	1628
5 mm	240 ± 8	960 ± 8	4 190	1.40	100	1

¹Example =For the 500 μ m coil the 90% RF field lines penetrate only 100 μ m which translates to observing 19.6 nL of the fish egg.

^{II} Example= 500 μ m coil has on total observable volume of 19.6 nL when the coil is overfilled, however because the fish egg has a volume of 4 190 nL the filling factor is 100%.

III Example = 500 μ m coil observes only 19.6 nL of the egg, however the egg's total volume is 4 190 nL, as a result only 0.47% of the egg is observed.

Table S2A.b. Data acquired for a *C. poecilopterus* egg on planar microcoils (185, 790 μ m O.D.) and 5-mm saddle coil. Calculations are based on the volume within the 90% RF field lines.¹

Coil	Actual	SNR normalized	Volume of sample	Filling	% of the sample	Mass sensitivity
size	SNR	to	observed (V _{sample} , nL) ^I	factor of	observed ^{III}	vs 5mm
0.D.	(16 scans)	256 scans		the coil"		
(I.D.)						
185	178 ± 3	712 ± 3	0.269	100% of	0.0064%	11 558
(50)				the coil is		
				filled		
790	1831± 21	7324 ± 21	49.0	100	1.17	653
(500)						
5 mm	240 ± 8	960 ± 8	4 190	1.40	100	1

¹Example =For the 500 μ m (790 μ m O.D.) coil the 90% RF field lines penetrate only 100 μ m which translates to observing 49.0 nL of the fish egg.

^{II} Example= 500 μ m coil has on total observable volume of 49.0 nL when the coil is overfilled, however because the fish egg has a volume of 4 190 nL the filling factor is 100%.

^{III} Example = 500 μ m coil observes only 49.0 nL of the egg, however the egg's total volume is 4 190 nL, as a result only 1.17% of the egg is observed.

Table S2B.a. Data acquired for a *C. poecilopterus* egg on planar microcoils (50, 500 μ m I.D.) and 5-mm saddle coil. Calculations are based on the volume within the 50% RF field line and the coil I.D.¹

Coil size	Actual SNR	SNR normalized to	Volume of sample observed (V _{comple} , nL) ¹	Filling factor of	% of the sample observed ^{III}	Mass sensitivity vs 5mm
LD.	(16 scans)	256 scans		the coil"		
	(20 00000)	200 000110				
E0	170 ± 2	712 + 2	0.0401	100% of	0.001.2%	62 200
50	1/010	/12±5	0.0491	100% 01	0.0012%	05 269
				the coil is		
				filled		
500	1831± 21	7324 ± 21	49.1	100	1.20	651
5 mm	240 ± 8	960 ± 8	4 190	1.40	100	1
1	1	1				

 $^{\rm I}$ Example =For the 500 μm coil the 50% RF field lines penetrate only 250 μm which translates to observing 49.1 nL of the fish egg.

^{II} Example= 500 μ m coil has on total observable volume of 49.1 nL when the coil is overfilled, however because the fish egg has a volume of 4 190 nL the filling factor is 100%.

III Example = 500 μ m coil observes only 49.1 nL of the egg, however the egg's total volume is 4 190 nL, as a result only 1.18% of the egg is observed.

Table S2B.b. Data acquired for a *C. poecilopterus* egg on planar microcoils (185, 790 μ m O.D.) and 5-mm saddle coil. Calculations are based on the volume within the 50% RF field line and the coil O.D.¹

Coil	Actual	SNR normalized	Volume of sample	Filling	% of the sample	Mass sensitivity
size	SNR	to	observed (V _{sample} , nL) ^I	factor of	observed ^{III}	vs 5mm
0.D.	(16 scans)	256 scans		the coil ^{II}		
(I.D.)						
185	178 ± 3	712 ± 3	0.672	100% of	0.0160%	4 627
(50)				the coil is		
				filled		
790	1831±21	7324 ± 21	122	100	2.91	262
(500)						
5 mm	240 ± 8	960 ± 8	4 190	1.40	100	1
	1					

¹Example =For the 500 μ m (790 μ m O.D.) coil the 50% RF field lines penetrate only 250 μ m which translates to observing 122 nL of the fish egg.

^{II} Example= 500 μ m coil has on total observable volume of 122 nL when the coil is overfilled, however because the fish egg has a volume of 4 190 nL the filling factor of the coil is 100%.

^{III} Example = 500 μm coil observes only 122 nL of the egg, however the egg's total volume is 4 190 nL, as a result only 2.91 % of the egg is observed.

Table S2C.a. Data acquired for a *C. poecilopterus* egg on planar microcoils (50, 500 μ m I.D.) and 5-mm saddle coil. Calculations are based on a total volume.¹

Coil size I.D.	Actual SNR (16 scans)	SNR normalized to 256 scans	Volume of sample observed (V _{sample} , nL) ^I	e Filling % of the sample L) ¹ factor of observed ¹¹¹ the coil ¹¹		Mass sensitivity vs 5mm
50	178 ± 3	712 ± 3	0.0982	100% of the coil is filled	0.0023%	31 644
500	1831±21	7324 ± 21	98.2	100	2.34	326
5 mm	240 ± 8	960 ± 8	4 190	1.40	100	1

¹ Example =For the 500 μ m coil (the total volume) penetrates ~500 μ m which translates to an excitation volume of 98.2 nL. ^{II} Example= 500 μ m coil has on total observable volume of 98.2 nL when the coil is overfilled, however since the fish egg volume is 4 190 nL, the filling factor is 100%.

III Example = 500 μ m coil observes 98.2 nL of the fish egg which translates to 2.34% of the egg.

Table S2C.b. Data acquired for a *C. poecilopterus* egg on planar microcoils (185, 790 μ m O.D.) and 5-mm saddle coil. Calculations are based on a total volume.¹

Coil	Actual	SNR normalized	Volume of sample	Filling	% of the sample	Mass sensitivity
size	SNR	to	observed (V _{sample} , nL) ^I	factor of	observed ^{III}	vs 5mm
0.D.	(16 scans)	256 scans		the coil"		
(I.D.)						
185	178 ± 3	712 ± 3	1.34	100% of	0.032%	2 320
(50)				the coil is		
				filled		
790	1831± 21	7324 ± 21	245	100	5.85	131
(500)						
5 mm	240 ± 8	960 ± 8	4 190	1.40	100	1

¹ Example =For the 500 μ m (790 μ m O.D.) coil (the total volume) penetrates ~500 μ m which translates to an excitation volume of 245 nL.

^{II} Example= 500 μ m coil has on total observable volume of 245 nL when the coil is overfilled, however since the fish egg volume is 4 190 nL, the filling factor is 100%.

III Example = 500 μ m coil observes 245 nL of the fish egg which translates to 5.85% of the egg.

Table S3A.a. Data acquired for a *Daphnia magna* egg on planar microcoils (50, 500 μ m I.D.) and 5-mm saddle coil. Calculations are based on the volume within the 90% RF field line.¹

Coil	Actual	SNR	Volume of	Filling factor	% of the	Mass	Mass sensitivity
size	SNR	normalized	sample	of the coil"	sample	sensitivity vs	vs 5mm
I.D.	(512	to	observed ⁱ		observed ^{III}	5mm	(multiple pulse) ^v
	scans)	256 scans	(V _{sample} , nL)			(single	
		and W5				pulse) ^{iv}	
		losses					
50	385 ± 5	1361 ± 5	0.0196	100% of the	0.47	205 333	41 066
				coil is filled			
500	355 ± 4	1255 ± 4	2.09	Only 10% of	50	1775	335
				the coil is			
				filled			
5 mm	2 ± 0.3	1.41 ± 0.3	4.19	0.0014%	100	1	1
				observed			

¹Example =For the 500 μ m coil the 90% RF field lines penetrate only 100 μ m which translates to observing only half of the egg or 2.09 nL.

^{II} Example= 500 μ m coil has on total observable volume of 19.6 nL when the coil is overfilled, however since only 2.09 nL is filled with egg leading to a 10% filling factor.

III Example = 500 μ m coil observes only 2.09 nL of the egg, however the egg's total volume is 4.19 nL, as a result only 50% of the egg is observed.

^{IV} Mass sensitivity for a single pulse is calculated after correcting for W5 losses and allows comparison to the fish egg and sucrose samples.

^v Mass sensitivity for a multiple pulse includes W5 losses and demonstrates the performance loss for multiple pulse experiments on the present coils.

Table S3A.b. Data acquired for a *D. magna* egg on planar microcoils (185, 790 μ m O.D.) and 5-mm saddle coil, however calculations for the 790 μ m coil are omitted as the *D. magna* egg does not cover the entire coil region (only 1/3). Calculations are based on the volume within the 90% RF field line.¹

Coil	Actual	SNR	Volume of	Filling factor	% of the	Mass	Mass sensitivity
size	SNR	normalized	sample	of the coil"	sample	sensitivity vs	vs 5mm
0.D.	(512	to	observed		observed ^{III}	5mm	(multiple pulse) [∨]
(I.D.)	scans)	256 scans	(V _{sample} , nL)			(single	
		and W5				pulse) ^{IV}	
		losses					
185	385 ± 5	1361 ± 5	0.269	100% of the	6.4%	15 013	3 003
(50)				coil is filled			
5 mm	2 ± 0.3	1.41 ± 0.3	4.19	0.0014%	100	1	1
				observed			

¹Example =For the 50 μ m (185 μ m O.D.) coil at 90% RF field lines penetrate out 10 μ m which translates to observing 0.269 nL of the *D. magna* egg.

^{II} Example= 50 μ m coil has on total observable volume of 0.269 nL when the coil is overfilled, however since the egg's total volume is 4.19 nL, 100% of the coil is filled with sample.

III Example = 50 μ m coil observes only 0.269 nL of the egg, however the egg's total volume is 4.19 nL, as a result only 6.4% of the egg is observed.

^{IV} Mass sensitivity for a single pulse is calculated after correcting for W5 losses and allows comparison to the fish egg and sucrose samples.

^v Mass sensitivity for a multiple pulse includes W5 losses and demonstrates the performance loss for multiple pulse experiments on the present coils.

Coil	Actual SNR	SNR	Volume of	Filling factor	% of the	Mass	Mass
size I.D.	(512 scans)	normalized	sample	of the coil ^{II}	sample	sensitivity vs	sensitivity vs
		to	observed ¹		observed ^{III}	5mm	5mm
		256 scans	(V _{sample} , nL)			(single	(multiple
		and W5				pulse) [™]	pulse) [∨]
		losses					
50	385 ± 5	1361 ± 5	0.0491	100% of the	1.17	92 420	18 484
				coil is filled			
500	355 ± 4	1255 ± 4	4.19	Only 9% of	100	1 000	200
				the coil is			
				filled			
5 mm	2 ± 0.3	1.41 ± 0.3	4.19	0.0014%	100	1	1
				observed			

Table S3B.a. Data acquired for a *D. magna* egg on planar microcoils (50, 500 μ m I.D.) and 5-mm saddle coil. Calculations are based on the volume within the 50% RF field line.¹

¹ Example =For the 500 μ m coil the 50% RF field lines penetrate 250 μ m out which translates to observing the egg in its entirety (4.19 nL). Since this RF field line extended out past the 200 μ m diameter of the egg, the observed volume was assumed to contain the entire egg.

^{II} Example= 500 μ m coil has on total observable volume of 49.1 nL when the coil is overfilled, however since only 4.19 nL is filled with egg leading to a 9% filling factor.

 $^{\mbox{\tiny III}}$ Example = 500 μm coil observes the entire egg.

^{IV} Mass sensitivity for a single pulse is calculated after correcting for W5 losses and allows comparison to the fish egg and sucrose samples.

^v Mass sensitivity for a multiple pulse includes W5 losses and demonstrates the performance loss for multiple pulse experiments on the present coils.

Table S3B.b. Data acquired for a *D. magna* egg on planar microcoils (185, 790 μ m O.D.) and 5-mm saddle coil. Calculations for the 790 μ m coil are omitted as the *D. magna* egg fully sits within the 500 μ m I.D. as such the O.D is not relevant in this case. Calculations are based on the volume within the 50% RF field line.¹

Coil	Actual SNR	SNR	Volume of	Filling factor	% of the	Mass	Mass
size	(512 scans)	normalized	sample	of the coil ^{II}	sample	sensitivity vs	sensitivity vs
0.D.		to	observed ¹		observed ^{III}	5mm	5mm
(I.D.)		256 scans	(V _{sample} , nL)			(single	(multiple
		and W5				pulse) ^{iv}	pulse) ^v
		losses					
185	385 ± 5	1361 ± 5	0.672	100% of the	16.0%	6 010	1 202
(50)				coil is filled			
5 mm	2 ± 0.3	1.41 ± 0.3	4.19	0.0014%	100	1	1
				observed			

¹Example = For the 50 μ m (185 μ m O.D.) coil at 50% RF field lines penetrate out 25 μ m which translates to observing 0.672 nL of the *D. magna* egg.

^{II} Example= 50 μ m coil has on total observable volume of 0.672 nL when the coil is overfilled, however since the egg's total volume is 4.19 nL, 100% of the coil is filled with sample.

^{III} Example = 50 μm coil observes only 0.672 nL of the egg, however the egg's total volume is 4.19 nL, as a result only 16.0% of the egg is observed.

^{IV} Mass sensitivity for a single pulse is calculated after correcting for W5 losses and allows comparison to the fish egg and sucrose samples.

^v Mass sensitivity for a multiple pulse includes W5 losses and demonstrates the performance loss for multiple pulse experiments on the present coils.

Table S3C.a. Data acquired for a *D. magna* egg on planar microcoils (50, 500 μ m I.D.) and 5-mm saddle coil. Calculations are based on the total volume.¹

Coil	Actual SNR	SNR	Volume of	Filling factor	% of the	Mass	Mass
size I.D.	(512 scans)	normalized	sample	of the coil ^{II}	sample	sensitivity vs	sensitivity vs
		to	observed ¹		observed ^{III}	5mm	5mm
		256 scans	(V _{sample} , nL)			(single	(multiple
		and W5				pulse) [™]	pulse) ^v
		losses					
50	385 ± 5	1361 ± 5	0.0982	100% of the	2.34	46 210	9 242
				coil is filled			
500	355 ± 4	1255 ± 4	4.19	Only 4% of	100	1 000	200
				the coil is			
				filled			
5 mm	2 ± 0.3	1.41 ± 0.3	4.19	0.0014%	100	1	1
				observed			

¹Example =For the 500 μ m coil (the total volume) penetrates 500 μ m out which translates to observing the egg in its entirety (4.19 nL). Since this RF field line extended out past the 200 μ m diameter of the egg, the observed volume was assumed to contain the entire egg.

^{II} Example= 500 μ m coil has on total observable volume of 98.2 nL when the coil is overfilled, however since only 4.19 nL is filled with egg leading to a 4% filling factor.

 $^{\mbox{\tiny III}}$ Example = 500 μm coil observes the entire egg.

^{IV} Mass sensitivity for a single pulse is calculated after correcting for W5 losses and allows comparison to the fish egg and sucrose samples.

^v Mass sensitivity for a multiple pulse includes W5 losses and demonstrates the performance loss for multiple pulse experiments on the present coils.

Table S3C.b. Data acquired for a *D. magna* egg on planar microcoils (185, 790 μ m O.D.) and 5-mm saddle coil, however calculations for the 790 μ m coil are omitted as the *D. magna* egg does not cover the entire coil region (only 1/3). Calculations are based on the total volume.¹

Coil	Actual SNR	SNR	Volume of	Filling factor	% of the	Mass	Mass
size	(512 scans)	normalized	sample	of the coil"	sample	sensitivity vs	sensitivity vs
0.D.		to	observed ⁱ		observed ^{III}	5mm	5mm
(I.D.)		256 scans	(V _{sample} , nL)			(single	(multiple
		and W5				pulse) ^{IV}	pulse) [∨]
		losses					
185	385 ± 5	1361 ± 5	1.34	100% of the	32.0%	3 014	603
(50)				coil is filled			
5 mm	2 ± 0.3	1.41 ± 0.3	4.19	0.0014%	100	1	1
				observed			

¹Example = For the 50 μ m (185 μ m O.D.) coil (the total volume) penetrates ~50 μ m which translates to an excitation volume of 1.34 nL.

^{II} Example= 50 μ m coil has on total observable volume of 1.34 nL when the coil is overfilled, however since the egg's total volume is 4.19 nL, 100% of the coil is filled with sample.

III Example = 50 μ m coil observes only 1.34 nL of the egg, however the egg's total volume is 4.19 nL, as a result only 32.0% of the egg is observed.

^{IV} Mass sensitivity for a single pulse is calculated after correcting for W5 losses and allows comparison to the fish egg and sucrose samples.

^v Mass sensitivity for a multiple pulse includes W5 losses and demonstrates the performance loss for multiple pulse experiments on the present coils.

References:

1 C. Massin, G. Boero, F. Vincent, J. Abenhaim, P. A. Besse and R. S. Popovic, in *Sensors and Actuators, A: Physical*, 2002, **97**, 280–288.