
1 Two disc ion detection problem

We consider the problem of an inlaid disc of radius a subjected to a constant
flux of H+ ions, with no flux boundary conditions on the rest of the plane.
We would like to know how the concentration varies across the plane. In
particular we would like to know what the concentration is on an inlaid
detector disc of radius b, whose centre is a distance L away from the centre
of the first disc.

The governing equation for the concentration of H+ ions is Laplace’s equa-
tion:

∇2C = 0, (1)

which in cylindrical polar coordinates is given by

∂2C

∂r2
+

1

r

∂C

∂r
+

∂2C

∂z2
= 0. (2)

The boundary conditions are given by

D
∂C

∂z
= −Q, for r < a, z = 0, (3)

D
∂C

∂z
= 0, for r > a, z = 0, (4)

C(r, z) → 0, as | r |→ ∞. (5)

Here Q is the constant flux of ions from the disc, and has the dimensions mol
m−2 s−1. We shall also assume that the diffusion coefficient is constant. To
non-dimensionalise, we choose the following scalings:

r = ar̂, z = aẑ, C =
Qa

D
Ĉ. (6)

On dropping the hats, the equations become

∂2C

∂r2
+

1

r

∂C

∂r
+

∂2C

∂z2
= 0, (7)

with boundary conditions

∂C

∂z
= −1, for r < 1, z = 0, (8)

∂C

∂z
= 0, for r > 1, z = 0, (9)

C(r, z) → 0, as | r |→ ∞. (10)
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Using the Hankel transform, it is easy to show that the solution for the
concentration is given by

C(r, z) =

∫
∞

0

J0(αr)J1(α) exp(−αz)
dα

α
, (11)

where J0 and J1 are Bessel functions of order zero and one. The concentration
on the plane z = 0 is therefore given by

C(r, 0) =

∫
∞

0

J0(αr)J1(α)
dα

α
. (12)

Now to find the concentration on a disc of radius b whose centre is a distance
L away, we need to write our solution in terms of a coordinate system centred
on this disc. Firstly let us non-dimensionalise these distances, so that

β =
b

a
, λ =

L

a
. (13)

Then in terms of a cylindrical polar coordinate system, (s, θ), centred on the
second disc, we may write r as follows:

r =
√

λ2 + s2 + 2λs cos θ, (14)

and the total concentration CT (β, λ) on the second disc is equal to

CT (β, λ) =

∫ β

0

∫
2π

0

∫
∞

0

J0(α
√

λ2 + s2 + 2λs cos θ)J1(α)
s

α
dα dθ ds. (15)

Note that we must have λ > 1 + β, so that the discs do not overlap. Now by
Graf’s addition theorem (Abramowich and Stegun), it may be shown that

J0(α
√

λ2 + s2 + 2λs cos θ) =
∞∑

k=−∞

Jk(αλ)Jk(αs) cos(kθ). (16)

On using this formula and integrating over θ, only the k = 0 term produces
a non-zero result, so that

CT (β, λ) = 2π

∫ β

0

∫
∞

0

J0(αλ)J0(αs)J1(α)
s

α
dα ds. (17)
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Integrating with respect to s, we obtain

CT (β, λ) = 2πβ

∫
∞

0

J0(αλ)J1(αβ)J1(α)
dα

α2
. (18)

Using a result of Bailey, this integral may be evaulated in terms of the fourth
type of Appell’s hypergeometric functions of two variables, so that

CT (β, λ) =
πβ2

2λ
F4[

1

2
,

1

2
; 2, 2;

β2

λ2
,

1

λ2
], (19)

noting again that this is only true if λ > 1 + β. Appell’s F4 function is
represented by the power series

F4(a, b; c, c′; x, y) =
∞∑

m,n=0

(a, m + n)(b, m + n)

(c, m)(c′, n) m! n!
xmyn, | x | 12 + | y | 12 < 1,

(20)
where

(a, m) = Γ(a + m)/Γ(a), (a, 0) = 1. (21)

Suppose that we take β = 1, so that the detector disc is the same size as
the generator disc. Then we may plot CT (1, λ) as a function of λ for λ > 2.
Truncating the series at 45 terms, the profile of the concentration as λ varies
is shown in Figure 1.
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Figure 1: Graph of the total concentration on an inlaid detector disc with
unit radius, as the distance λ between the detector disc and the generator
disc varies.
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