
1 Two disc ion detection problem

We consider the problem of an inlaid disc of radius a subjected to a constant
flux of H+ ions, with no flux boundary conditions on the rest of the plane.
The H+ ions are subject to a reversible reaction with a base A- in the bulk
solution, with product B:

H + A
kf



kb

B, (1)

so that the forward and back rate constants are given by kf (mol−1m3s−1)
and kb (s−1) respectively. We would like to know how the concentration varies
across the plane. In particular we would like to know what the concentration
is on an inlaid detector disc of radius b, whose centre is a distance L away
from the centre of the first disc.

Ingoring any electric effects and seeking only steady solutions, the governing
equations for the concentration of the three species H , A and B, are

DH∇2H = kfHA − kbB, (2)

DA∇2A = kfHA − kbB, (3)

DB∇2B = −kfHA + kbB. (4)

The boundary conditions for H are given by

DH

∂H

∂z
= −Q, for r < a, z = 0, (5)

∂H

∂z
= 0, for r > a, z = 0, (6)

H(r, z) → 0, as | r |→ ∞, (7)

Here Q is the constant flux of ions from the disc, and has the dimensions mol
m−2 s−1. We shall also assume that the diffusion coefficient is constant, and
we assume that the bulk concentration of H is zero.

The boundary conditions for A are:

∂A

∂z
= 0, on z = 0, (8)

A(r, z) → A
∞

, as | r |→ ∞, (9)

where A
∞

is the bulk concentration of the base.
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The boundary conditions for B are:

∂B

∂z
= 0, on z = 0, (10)

B(r, z) → 0, as | r |→ ∞. (11)

The first thing we note is that by adding (3) and (4), and using the boundary
conditions for A and B, it follows that

∇2 (DAA + DBB) = 0, (12)

subject to the boundary conditions

∂ (DAA + DBB)

∂z
= 0, on z = 0, (13)

DAA + DBB → DAA
∞

, as | r |→ ∞. (14)

This means that the quantity DAA + DBB is conserved, and

DAA + DBB = DAA
∞

. (15)

Solving for B and substituting in, we find that the governing equations reduce
to two equations for H and A:

DH∇2H = kfHA − kbDA

DB

(A
∞
− A), (16)

DA∇2A = kfHA − kbDA

DB

(A
∞
− A). (17)

To non-dimensionalise, we choose the following scalings:

r = ar̂, z = aẑ, H =
Qa

DH

Ĥ, A = A
∞

Â. (18)

On dropping the hats, the equations become

∇2H = k1HA − k2(1 − A), (19)

k3∇2A = k1HA − k2(1 − A), (20)

where the non-dimensional parameters k1, k2 and k3 are given by

k1 =
kfa

2A
∞

DH

, k2 =
kbaA

∞
DA

QDB

, k3 =
A

∞
DA

Qa
. (21)
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The boundary conditions for H are

∂H

∂z
= −1, for r < 1, z = 0, (22)

∂H

∂z
= 0, for r > 1, z = 0, (23)

H(r, z) → 0, as | r |→ ∞, (24)

and boundary conditions for A

∂A

∂z
= 0, onz = 0, (25)

A(r, z) → 1, as | r |→ ∞, (26)

Now we note that if we subtract (20) from (19) we find that

∇2(H − k3A) = 0, (27)

with boundary conditions

∂(H − k3A)

∂z
= −1, for r < 1, z = 0, (28)

∂(H − k3A)

∂z
= 0, for r > 1, z = 0, (29)

(H − k3A) → −k3, as | r |→ ∞. (30)

Using the Hankel transform, it is easy to show that the solution to this
problem is given by

H(r, z) − k3A(r, z) = −k3 +

∫

∞

0

J0(αr)J1(α) exp(−αz)
dα

α
, (31)

where J0 and J1 are Bessel functions of order zero and one. The concentration
of H on the plane z = 0 is therefore given by

H(r, 0) =

∫

∞

0

J0(αr)J1(α)
dα

α
− k3 (1 − A(r, 0)) . (32)

This means that the concentration of H is equal to the concentration for
a disk generator with no reaction less the amount that has reacted with A,
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which is proportional to (1−A). It is very important to note that the reaction
with A only makes a noticeable difference to the concentration of H detected
if k3 is at least O(1). This is vital in determining sensor design.

From (31), we may write

H(r, z) = k3 (A(r, z) − 1) + H1(r, z), (33)

where H1 is the solution for the disc generator with no bulk reaction, which
we emphasize is known. Substituting into (20), we find a governing equation
for A

∇2A = k1 (A − 1)A +
k1

k3

AH1 −
k2

k3

(1 − A), (34)

= k1A
2 + A

(

k1

k3

H1 +
k2

k3

− k1

)

− k2

k3

, (35)

with boundary conditions (25) and (26). Hence we have reduced three gov-
erning equations down to one governing equation for A with simple boundary
conditions. It is still a complicated equation, and is non-linear in A, but we
may be able to do some asymptotics depending on the sizes of the parameters
k1, k2 and k3. We shall assume that Q has been chosen such that k3 = O(1).

We note that in general kf and kb have the following magnitudes

kf ≈ 106 − 107mol−1 m3 s−1, (36)

kb ≈ 103 − 104s−1. (37)

This implies that k1 will be large, while depending on the value of Q , k2 will
be around O(1). Dividing through by k1, the governing equation becomes:

1

k1

∇2A = A2 + A

(

1

k3

H1 +
k2

k1k3

− 1

)

− k2

k1k3

. (38)

Provided that we are not near the disc then the lefthand side may be ne-
glected and the solution to the following quadratic satisifes the boundary
conditions (25) and (26):

A2 + A

(

1

k3

H1 +
k2

k1k3

− 1

)

− k2

k1k3

= 0. (39)
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so that

A =
1

2



−
(

1

k3

H1 +
k2

k1k3

− 1

)

+

√

(

1

k3

H1 +
k2

k1k3

− 1

)2

+ 4
k2

k1k3



 ,

(40)
where we have taken the positive square root to ensure that A > 0. Inserting
this into (33) we obtain

H(r, z) =
1

2



H1(r, z) − k2

k1

− k3 +

√

(

H1(r, z) +
k2

k1

− k3

)2

+ 4
k2k3

k1



 .

(41)

In the limit that k2/k1 � 1, we have to be a bit more careful. Letting
k2/k1 = ε, and expanding the original quadratic in powers of ε, so that

A = A0 + εA1 + ε2A2 + . . . . (42)

Then the solution is given by

A0 = 1 − H1

k3

, (43)

A1 =
H1

k3(k3 − H1)
. (44)

2 Concentration on disc far away

Suppose that we now would like to measure the concentration on a disc whose
centre is a non-dimensional distance λ away from the centre of the generator
disc, and let us assume that λ � 1. Then it is convenient to write the
solution for H1(r, z) in the following form:

H1(r, z) =
2

π

∫ 1

0

K

(

2
√

rs

(r + s)2 + z2

)

s ds
√

(r + s)2 + z2
, (45)

where K(·) denotes a complete elliptic integral of the first kind. Then the far
field behaviour as r → ∞ on z = 0 is easily shown to be

H1(r, z) ∼ 1

2r
+ O

(

1

r3

)

, (46)
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so that the disc is a point source as expected. Subtituting this into the
solution (49), we obtain:

H(r, z) ∼ 1

2





1

2r
− k2

k1

− k3 +

√

(

1

2r
+

k2

k1

− k3

)2

+ 4
k2k3

k1



 . (47)

Writing r in terms of a cylindrical coordinate system (s, θ) centered at the
centre of the detection disc, so that

r =
√

λ2 + 2λs cos θ + s2, (48)

and expanding in powers of λ, we obtain:

H(s, θ) ∼ k2

2(k2 + k1k3)λ
+

k2(k
2
1k3 − 2(k2 + k1k3)

2s cos θ)

4(k2 + k1k3)3λ2
+O

(

1

λ3

)

. (49)

Hence the average concentration across the detection disc is given by (as-
suming that the non-dimensional radius is b):

HAv =
1

πb2

∫ b

0

∫ 2π

0

H(s, θ)s ds dθ, (50)

=
k2

2(k2 + k1k3)λ
+ O

(

1

λ2

)

. (51)

In dimensional terms, we have to leading order

HAv, dim =
Qa

2
(

DH +
kf

kb
A

∞
DB

)

λ
(52)
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