Supplementary Information

for

Highly sensitive and selective detection of Pd²⁺ ions using a triple channel receptor of ferrocene-rhodamine conjugate in aqueous medium and living cells

Dan-Dan Huang, Mei Zhao, Xue-Xin Lv, Yang-Yang Xing, De-Zhan Chen and Dian-Shun Guo st

College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, P. R. China

Email: chdsguo@sdnu.edu.cn

Contents

- 1. Fig. S1 The UV-vis absorbance spectrum of FR.
- 2. Fig. S2 Time course of the response of FR to Pd^{2+} .
- 3. Table S1 Comparison of FR with some reported Pd^{2+} fluorescent probes.
- 4. **Fig. S3** The CV of **FR**.
- Fig. S4 The DPV assay of FcCO₂H, FR, FcCH=CHOCH3 and FcCHO upon the addition of 0 and 1.0 equiv PdCl₂.
- 6. **Fig. S5** IR spectra of **FR** and its Pd^{2+} complex.
- 7. Table S2 Cartesian coordinates (in Å) of the structures of FR and $[FR \cdot PdCl]^+$.
- Fig. S6 A DFT-optimized structure of FR, calculated using the B3LYP/LANL2DZ basis set.
- 9. **Fig. S7** ¹H NMR spectrum of **FR**.
- 10. Fig. S8 13 C NMR spectrum of FR.
- 11. Fig. S9 HR-MS spectrum of FR.
- 12. References.

Fig. S1 UV-vis absorbance spectrum of FR (10 μ M) in H₂O/THF (9:1, v/v) at room temperature.

Fig. S2 Time course of the response of FR (10 μ M) to 2 equiv of Pd²⁺ in H₂O/THF (9:1, v/v) solution.

Probe	Medium	Detection limit	Ref.
	EtOH : $H_2O = 1 : 99$	$1.3 \times 10^{-7} \mathrm{M}$	1
	DMF : H ₂ O = 1 : 99	$3 imes 10^{-8} \mathrm{M}$	2
	EtOH : $H_2O = 1 : 1$	$7.38 imes10^{-8}\mathrm{M}$	3
	MeOH : PBS = 1 : 1	$1.9 \times 10^{-7} \mathrm{M}$	4
	HEPES : $CH_3CN = 1 : 1$	0.1 ppm	5
	EtOH : PBS = 3 : 7	$2.13 \times 10^{-8} \mathrm{M}$	6
	EtOH : $H_2O = 1 : 1$	$4.5 \times 10^{-7} \mathrm{M}$	7

Table S1 Comparison of FR with some reported Pd^{2+} fluorescent probes.

UV : EtOH :
$$H_2O = 4 : 6$$

Fl: $CH_3CN : H_2O = 8 : 2$
 $2.4 \times 10^{-9} M$
8

 $\langle \! \rangle$

Tris-HCl buffer solution
(pH 7.2)
$$1.5 \times 10^{-8}$$
 M 9

EtOH :
$$CH_3CN = 1 : 1$$
 10⁻⁷ M

EtOH :
$$H_2O = 1 : 1$$
 2.3 × 10⁻⁷ M 11

10

 $CH_3CN: H_2O = 4:1$ 5.7 × 10⁻⁸ M 12

EtOH :
$$H_2O = 4:6$$

ROP : $3.49 \times 10^{-6} M$
ROM : $4.64 \times 10^{-6} M$

5

Fig. S3 The CV of **FR** (0.7 mM) in H_2O/THF (1:1, v/v) solution using *n*-Bu₄NClO₄ as supporting electrolyte.

Fig. S4 The DPV assay of FcCO₂H, FR, FcCH=CHOCH₃ and FcCHO (0.7 mM) in H₂O/THF (1:1, v/v) solution containing 0.1 M *n*-Bu₄NClO₄ as supporting electrolyte upon the addition of 0 (solid lines) and 1.0 (dotted lines) equiv PdCl₂.

Fig. S5 IR spectra of the probe FR and its corresponding Pd^{2+} complex.

Table S2 Cartesian coordinates (in Å) of the structures of FR and $[FR \cdot PdCl]^+$.

	FK	
Fe 4.19150932	-4.19022450	-0.58303335
C 2.13506432	-4.13448450	-0.94513335
C 2.81389032	-4.80715750	-2.01492735
Н 2.81115232	-4.48383750	-3.04556235
C 3.48915032	-5.93667450	-1.47074135
Н 4.11079332	-6.62882150	-2.02222535
C 3.24903732	-5.96633250	-0.06181935
Н 3.65121232	-6.68620850	0.63772265
C 2.41930632	-4.85432950	0.26501965
Н 2.07341032	-4.58319450	1.25354565
C 5.50951332	-2.86983050	-1.49467235
Н 5.43122132	-2.55840950	-2.52715735
C 6.21687332	-4.01392350	-1.01311535
Н 6.77257432	-4.71803750	-1.61723535
C 6.02259232	-4.09110250	0.39954065
Н 6.40647532	-4.86311050	1.05250565
C 5.19440332	-2.99525750	0.79065765
Н 4.84196632	-2.79080450	1.79235465
C 4.87956132	-2.23873250	-0.37988935
Н 4.23288132	-1.37277050	-0.42143635
C 0.46644380	-1.60939674	-3.13075396
N 0.14821200	-0.90091000	-2.10515100
N -0 58944400	0 22910100	-2 23142700

FR

C -1.19977300	1.06741000	-1.14664100
C -0.82446700	0.71305100	-3.53255500
C -1.86602300	2.15511400	-1.99548400
C -2.23123700	0.29423700	-0.33719000
C -0.14549000	1.66530800	-0.22508300
O -0.42878500	0.21587900	-4.56902300
C -1.64046400	1.93561600	-3.35051800
C -2.61153100	3.25133900	-1.57194000
C -3.18757900	-0.52905200	-0.94562700
C -2.30980500	0.41509200	1.05252100
C -0.32579900	1.71305000	1.15948500
C 1.03202200	2.24139200	-0.71819400
C -2.14443800	2.79186500	-4.32808700
Н -2.79358400	3.43194700	-0.51658300
C -3.12212200	4.11663400	-2.54363100
Н -3.15885200	-0.65099800	-2.02455400
C -4.16774000	-1.19191700	-0.22467900
O -1.42492200	1.17307300	1.78670700
C -3.28420100	-0.23770300	1.80626000
C 0.60189100	2.30696200	2.01513500
C 1.97779000	2.83139200	0.10692900
Н 1.21532200	2.21761200	-1.78866400
C -2.89254800	3.89183600	-3.90985200
Н -1.95015700	2.59195900	-5.37728500
Н -3.70718500	4.97879200	-2.23579500

Η	-4.88385200	-1.79845200	-0.76372000
С	-4.24777200	-1.05842600	1.18653800
Н	-3.24459300	-0.10404300	2.87907700
Η	0.37552900	2.27913900	3.07223200
С	1.77731200	2.90046400	1.51190600
Η	2.86927900	3.24365300	-0.34631300
Η	-3.30172000	4.58119100	-4.64260800
N	-5.22594500	-1.70713000	1.92221500
N	2.68563300	3.53449700	2.34693700
С	-6.12587600	-2.68221400	1.31249700
С	-5.39492500	-1.46603200	3.35130000
С	3.92854600	4.09547800	1.82046500
С	2.47665600	3.56803700	3.79189400
Η	-6.39452600	-3.41165400	2.08512700
Η	-5.58384100	-3.24796700	0.54797700
С	-7.40215700	-2.06922500	0.72024900
Η	-6.45308800	-1.62245700	3.59035000
Η	-5.19561300	-0.41077200	3.56469300
С	-4.52987800	-2.36548300	4.24516000
Η	4.26711200	4.85468000	2.53299000
Η	3.71276300	4.63548800	0.89153500
С	5.05586500	3.07915800	1.58544600
Η	1.42463000	3.80151600	3.99362800
Η	3.05066200	4.41411100	4.18352800
С	2.88036500	2.28955200	4.54214100

Н -7.97813900	-1.54558600	1.49030600
Н -8.04088500	-2.84955300	0.29212500
Н -7.16527500	-1.34866000	-0.06754100
Н -4.75822700	-3.42231000	4.07277100
Н -4.71397300	-2.14795700	5.30299500
Н -3.46522500	-2.21724100	4.04411100
Н 5.36349800	2.60708800	2.52320700
Н 5.93142500	3.57806300	1.15540000
Н 4.74513000	2.28683200	0.89894300
Н 2.34726800	1.41662300	4.15527700
Н 2.64639700	2.38647600	5.60819500
Н 3.95319400	2.09782500	4.44794000
C 0.07135742	-1.25129180	-4.57549186
Н -0.97250189	-1.01918297	-4.61268357
Н 0.63712146	-0.40311504	-4.90015667
Н 0.27494477	-2.08276437	-5.21744635
C 1.29029620	-2.88993287	-2.90033166
C 1.49598558	-3.07179611	-1.52751789
Н 1.64987993	-3.54008220	-3.67033516
Н 1.12015205	-2.31229276	-0.87421565
	[FR ·PdCl] ⁺	
Fe -4.49899947	4.50528631	-0.24669633
C -4.39276594	2.98992433	-1.66228265
C -5.76602011	3.23772937	-1.32036964
Н -6.42513632	2.53190875	-0.83667677

C -6.05693661	4.59188678	-1.63815764
Н -7.00240490	5.08588811	-1.46052265
C -4.88116077	5.20345467	-2.17495725
Н -4.78245038	6.23476874	-2.48463269
C -3.85162436	4.22570684	-2.18674805
Н -2.83422168	4.36799942	-2.52607525
C -4.78103744	4.05748281	1.75806347
Н -5.42745638	3.24522891	2.06108696
C -5.17376106	5.40557323	1.49652153
Н -6.17038599	5.80854450	1.61406772
C -4.03901789	6.11141962	0.99128732
Н -4.02303318	7.14402625	0.66967748
C -2.94022164	5.19933427	0.94105934
Н -1.94604594	5.42178475	0.57765977
C -3.40042211	3.93299653	1.41696317
Н -2.82335401	3.01923524	1.45727588
C -0.89537221	1.37100760	-2.07908571
N -0.93068300	0.10188400	-1.81694900
N 0.16684000	-0.77567000	-1.97176800
C 1.92854800	-2.25064700	-0.10143100
C -0.23140100	-2.01453800	-2.11316700
C 1.87036600	-3.15073200	-1.28742000
C 3.04455600	-1.38471600	0.08314900
C 0.92723900	-2.27076400	0.88682200
O -1.44555000	-2.45577300	-2.11454800

C 0.83624600	-3.05461700	-2.24188500
C 2.84140900	-4.15732800	-1.42723900
C 4.10258900	-1.21825600	-0.84946900
C 3.11942400	-0.57876700	1.24798600
C 1.02908600	-1.39337900	2.00979800
C -0.25896300	-3.06837200	0.83879900
C 0.77276200	-3.98582800	-3.28483600
Н 3.62997400	-4.24248000	-0.68505600
C 2.77988800	-5.06405300	-2.48321800
Н 4.07453700	-1.78765600	-1.77075600
C 5.15031000	-0.36120700	-0.62089600
O 2.13207900	-0.60693300	2.18090000
C 4.16749400	0.29166200	1.50212800
C 0.05410000	-1.28248300	2.97533100
C -1.24994000	-2.95731800	1.77101200
Н -0.41347400	-3.73417000	-0.00022900
C 1.74112800	-4.97862800	-3.41323300
Н -0.04901800	-3.91850100	-3.98989900
Н 3.53242800	-5.84211100	-2.57045000
Н 5.93205600	-0.29371600	-1.36552800
C 5.22413700	0.42585800	0.57399800
Н 4.11554200	0.87832600	2.40868300
Н 0.22564900	-0.58178300	3.77957300
C -1.13868800	-2.05003700	2.88192400
Н -2.16797600	-3.50081800	1.59662300

H 1.68314600	-5.68821200	-4.23323100
N 6.27228100	1.27748500	0.79995900
N -2.12141100	-1.93625600	3.80887900
C 7.30686000	1.52829700	-0.20876900
C 6.40773700	2.01639800	2.05889000
C -3.31762900	-2.80062800	3.82267800
C -2.08274600	-0.87595500	4.82833000
Н 7.67023300	2.54875100	-0.05032500
Н 6.85309600	1.52645900	-1.20360700
C 8.48024000	0.54397200	-0.14400500
Н 7.47774400	2.17913100	2.22449000
Н 6.07053600	1.38256200	2.88416400
C 5.66981800	3.36021600	2.06754500
Н -3.48984800	-3.06895500	4.87217800
Н -3.08096400	-3.73146000	3.30761400
C -4.57104200	-2.15975700	3.22266800
Н -1.10966800	-0.89871500	5.33377800
Н -2.82309500	-1.14530100	5.58565000
C -2.38245800	0.52871000	4.29002200
Н 8.96403400	0.57472000	0.83730400
Н 9.23087200	0.79806100	-0.89938100
H 8.14806100	-0.48274400	-0.32206900
Н 6.03875400	4.01501700	1.27186400
Н 5.82360100	3.87108700	3.02349300
Н 4.59475800	3.22600000	1.91985100

Н -4.87086600	-1.27036800	3.78523500
Н -5.39621000	-2.87800200	3.27122900
Н -4.42038900	-1.88088300	2.17666200
Н -1.65223900	0.84205300	3.54067100
Н -2.35972200	1.24840300	5.11530300
Н -3.36573400	0.56627600	3.81691000
Pd -2.70765329	-0.54714884	-1.05130720
Cl -4.24925929	-2.21593784	-0.44012920
C 0.48094288	1.88049915	-2.54574956
Н 1.11448093	2.02568152	-1.69577802
Н 0.92393834	1.16078900	-3.20200584
Н 0.36067981	2.80902421	-3.06370517
C -2.44924175	2.05486267	-1.80298487
C -3.68849563	1.80363398	-1.42412611
Н -3.87196012	1.25575016	-0.52353514
Н -2.40330066	3.10088332	-2.02350750

Fig. S6 A DFT-optimized structure of FR, calculated using the B3LYP/LANL2DZ basis set.

Fig. S7 ¹H NMR spectrum of FR.

Fig. S8 ¹³C NMR spectrum of FR.

References

- 1. Y.-M. Zhou, J.-L. Zhang, H. Zhou, Q.-Y. Zhang, T.-S. Ma and J.-Y. Niu, *Sens. Actuators, B*, 2012, **171-172**, 508-514.
- J.-L. Zhang, L. Zhang, Y.-M. Zhou, T.-S. Ma and J.Y. Niu, *Microchim Acta*, 2013, 180, 211-217.

- 3. B. Qiao, S.-G. Sun, N. Jiang, S. Zhang and X.-J. Peng, *Dalton Trans.*, 2014, 43, 4626-4630.
- M.-P. Yang, Y.-J. Bai, W.-F. Meng, Z. Cheng, N. Su and B.-Q. Yang, *Inorg. Chem. Commun.*, 2014, 46, 310-314.
- U.R. G, F. Ali, N. Taye, S. Chattopadhyay and A. Das, *Chem. Commun.*, 2015, 51, 3649-3652.
- 6. J. Cui, D.-P. Li, S.-L. Shen, J.-T. Liu and B.-X. Zhao, RSC Adv., 2015, 5, 3875-3880.
- A.K. Mahapatra, S.K. Manna, K. Maiti, S. Mondal, R. Maji, D. Mandal, S. Mandal, M.R. Uddin, S. Goswami, C.K. Quahd and H.K. Fun, *Analyst*, 2015, 140, 1229-1236.
- 8. M. Wang, X.-M. Liu, H.-Z. Lu, H.-M. Wang and Z.-H. Qin, *ACS Appl. Mat. Interfaces*, 2015, 7, 1284-1289.
- Q. Huang, Y.-M. Zhou, Q.-Y. Zhang, E.-Z. Wang, Y.-H. Min, H. Qiao, J.-L. Zhang and T.-S. Ma, Sens. Actuators, B, 2015, 208, 22-29.
- 10. L.-Q. Li and Z.-H. Liu, Spectrochim. Acta, Part A, 2015, 138, 954-957.
- 11. L.-Y. Zhou, Q.-Q. Wang, X.-B. Zhang and W.-H. Tan, Anal. Chem., 2015, 87, 4503-4507.
- 12. A. Ghosh, Sa. Nandi, A. Sengupta, A. Chattopadhyay, S. Lohar and D. Das, *Inorg. Chim. Acta*, 2015, **436**, 52-56.
- 13. F. Liu, J. Du, M.-Y. Xu and G.-P. Sun, Chem. Asian J., 2016, 11, 43-48.
- 14. Y. Long, Y.-J. Bai, J. Zhou and B.-Q. Yang, J. Photochem. Photobiol, A, 2017, **332**, 422-431.