Electronic Supplementary Material (ESI) for Analyst. This journal is © The Royal Society of Chemistry 2017

Supplementary information:

Colorimetric molecular diagnosis of HIV *gag* gene using DNAzyme and a complementary DNA-extended primer

Seong U Kim^{a#}, Bhagwan S Batule^{b#}, Hyoyoung Mun^b, Ju-Young Byun^b, Won-Bo Shim^c, Min-Gon Kim^{a,b}*

^aAdvanced Photonics Research Institute, Gwangju Institute of Science and Technology, 261 Chemdan-gbwagiro, Gwangju 500-712, Republic of Korea

^bDepartment of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, 261 Chemdan-gwagiro, Gwangju 500-712, Republic of Korea

^cDepartment of Agricultural chemistry and Food Science and Technology, Gyeongsang National University, 900 Gajwa-dong Jinju Gyeongnam 660-701, Republic of Korea * Corresponding author: E-mail address: mkim@gist.ac.kr (M.G. Kim), TEL: +82-62-715-3330, FAX: +82-62-715-3419

[#]*These authors contributed equally to this work.*

Figure S1. Selectivity test of the proposed colorimetric HIV-I *gag* gene detection. a) Agarose gel electrophoresis analysis. 1. With target; 2. Without target; 3. With human genomic DNA; 4. With *M. tuberculosis* genomic DNA. b) Quantitative data of 1. With target; 2. Without target; 3. With human genomic DNA; 4. With M. tuberculosis. Inset data shows colorimetric images quantitative data. The concentration of the gag gene, human genomic DNA, and *M. tuberculosis* were 10³, 10⁶, 10⁶ copies mL⁻¹, respectively. (L, 100-bp ladder).

Table S1 Comparison of analytical performance of the proposed study with previously reported methods of HIV detetion.

Detection method	Probe	Operation process	Time consuming (hour)	Detection limit	Reference
Electrochemical	Antibody conjugated with enzyme	Time- consuming, high cost	12 - 24	6.7 pM	1
Fluorescence	DNA/un- modified	Complicated, high cost	2 - 2.5	0.3 nM	2
Colorimetric	DNA/un- modified	Time- consuming , low cost	2.5	0.65 pM	3
Colorimetric	Biotin-DNA conjugated with nanofibrous	Complicated, high cost	4	4.8 pM	4
Fluorescence	enzyme-induced silver metallization	Time- consuming, not robust	2.5	10 pM	5
Fluorescence	DNA functionalized AgNCs	Complicated synthesis, not robust	1	0.40 nM	6
Fluorescence	FAM-labeled DNA	target enrichment process needed, high cost	1.33	1000 copies	7
Colorimetric	DNAzyme	Fast, low cost, robust, sensitive	1.16	10 copies	This study

References:

- 1. A. Bhimji, A. A. Zaragoza, L. S. Live and S. O. Kelley, Anal. Chem. 2013, 85, 6813-6819.
- 2. S. R. Jangam, A. K. Agarwal, K. Sur and D. M. Kelso, Biosens. Bioelectron. 2013, 42, 69-75.
- 3. W. Zhou, X. Gong, Y. Xiang, R. Yuan and Y. Chai, Biosens. Bioelectron. 2014, 55, 220-224.
- 4. Y. Long, C. Zhou, C. Wang, H. Cai, C. Yin, Q. Yang and D. Xiao, Sci. Rep. 2016, 6, 23949.
- 5. X. Yu, Z.-L. Zhang and S.-Y. Zheng, Biosens. Bioelectron. 2015, 66, 520-526.
- 6. Y. D. Ye, L. Xia, D. D. Xu, X. J. Xing, D. W. Pang and H. W. Tang, *Biosens. Bioelectron*. 2016, **85**, 837-843.
- 7. B. Rohrman and R. Richards-Kortum, Anal. Chem. 2015, 87, 1963-1967.