Supplementary Information

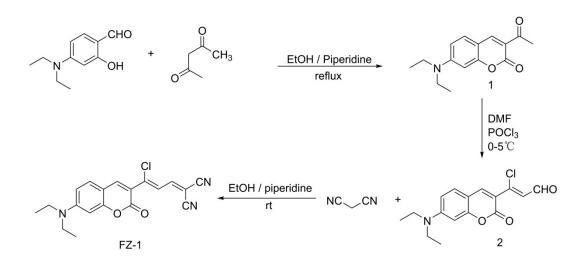
Trinal-site fluorescent probe for simultaneous sensing of

hydrogen sulfide and glutathione and its bioimaging applications

Fengzao Chen^{a, b}, Deman Han^a*, Heng Liu^b, Shengfu Wang^b, Kaibin Li^a, Siqi Zhang^a,

Wei Shi^a

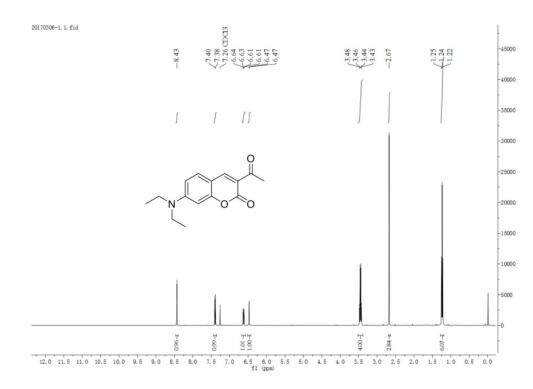
^a Department of Chemistry, Taizhou University, Jiaojiang, 318000, PR China.

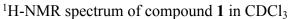

^b College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China.

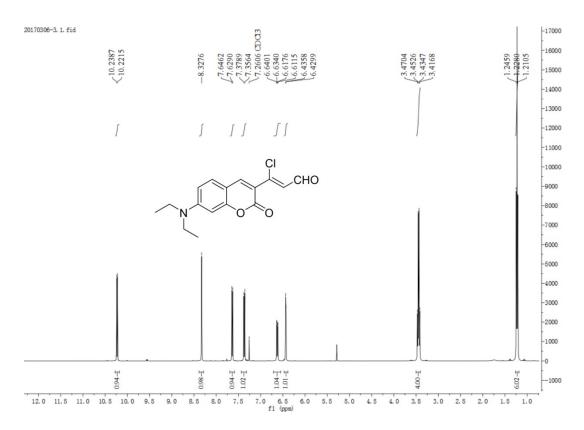
*Corresponding author: <u>hdmtzc@126.com</u>

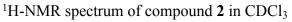
Contents

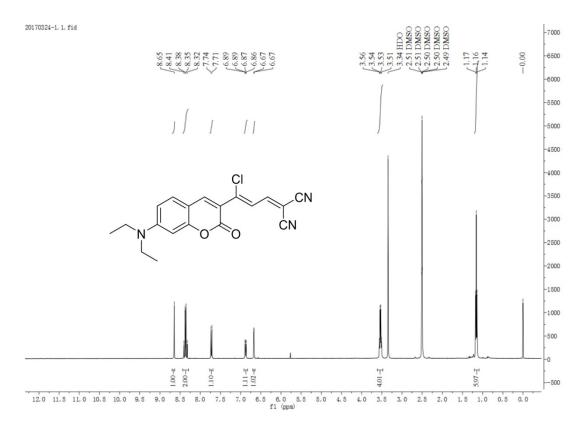
Synthesis	S-2
Characterization	S-2
¹ H-NMR spectrum of compound 1	S-2
¹ H-NMR spectrum of compound 2	S-3
¹ H-NMR spectrum of probe FZ-1	S-3
¹³ C-NMR spectrum of probe FZ-1	.S-4
HRMS spectrum of probe FZ-1	S-4
Optimization of the buffer system	S-5
Fluorescence Analysis	.S-7
HRMS Spectrum of the Reaction Mixture	S-10
Results from Cell Viability Assays	S-12
Table of comparison of fluorescent probe	S-12

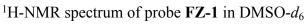

Synthesis

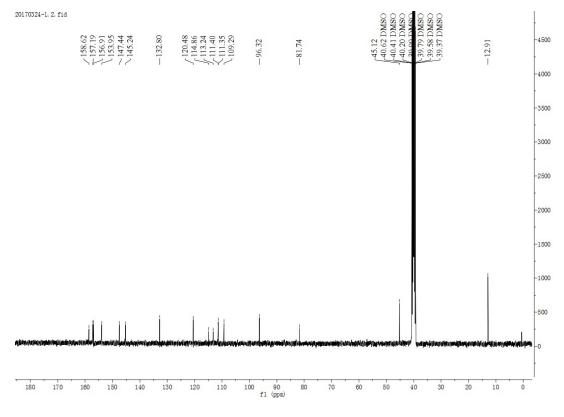


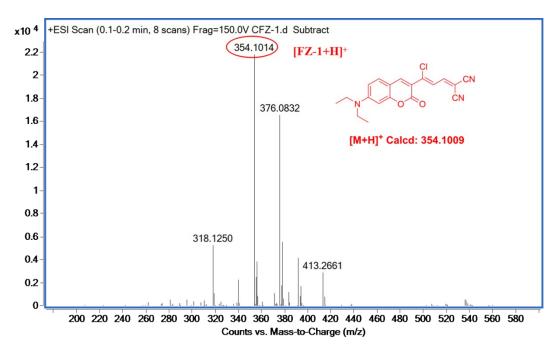

Synthesis of probe FZ-1


Characterization


¹H/ ¹³C NMR and HRMS spectra of compound 1, compound1 and probe FZ-1







¹³C-NMR spectrum of probe **FZ-1** in DMSO- d_6

HRMS spectrum of probe FZ-1

Optimization of the buffer system

It is a common phenomenon that the solvation effects have significant effect on some reactive fluorescent probes. Meixing Li et al.¹ have presented a ratiometric fluorescent probe that sense SO_3^{2-} / HSO_3^{-} and the probe also can detect hydrazine simultaneously in different buffer solutions according to the latest work of Yangyang He et al.². In this work, the influence of solvent polarity on the probe FZ-1 is particularly obvious. We had optimized the solvent-buffer of the reaction system before other spectra were tested, and the results as shown in Fig. 1 and Fig. 2 as follows: the probe FZ-1 could response well to H₂S in weak polar organic solvent-buffer such as THF/PBS buffer (v/v=1:1, 10 mM, pH=7.4) and acetonitrile/PBS buffer (v/v=1:1, 10 mM, pH=7.4). However, the probe FZ-1 hardly responds to H₂S in strong polar solventbuffer such as DMSO/PBS buffer (v/v=1:1, 10 mM, pH=7.4). On the contrary, the probe FZ-1 could response well to GSH in strong polar solvent-buffer of DMSO/PBS (v/v=1:1, 10 mM, pH=7.4) but hardly responds to GSH in weak polar organic solventbuffer of acetonitrile/PBS (v/v=1:1, 10 mM, pH=7.4). Considering these results, we chose the optimal solvent buffer for subsequent spectral tests which can detect the H₂S in the weak polar organic solvent-buffer of acetonitrile/PBS (v/v=1:1, 10 mM, pH=7.4) and sense the GSH in the strong polar organic solvent-buffer of DMSO/PBS (v/v=1:1, 10 mM, pH=7.4).

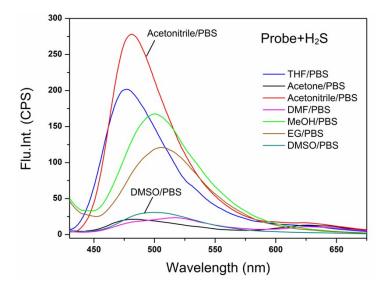


Fig. 1 Fluorescent spectra response of probe FZ-1 (10 μ M) for H₂S (50 μ M) in the various organic solvent-buffer (solvent/PBS, v/v=1:1, 10 mM, pH=7.4), E_x = 420 nm, Slits: 5/5 nm.

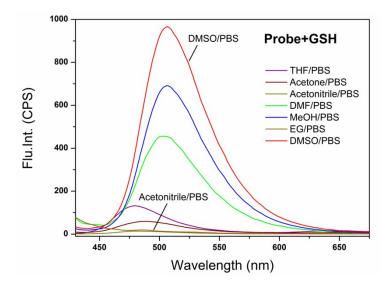


Fig. 2 Fluorescent spectra response of probe FZ-1 (10 μ M) for GSH (30 μ M) in the various organic solvent-buffer (solvent/PBS, v/v=1:1, 10 mM, pH=7.4), E_x = 420 nm, Slits: 5/5 nm.

Fluorescence Analysis

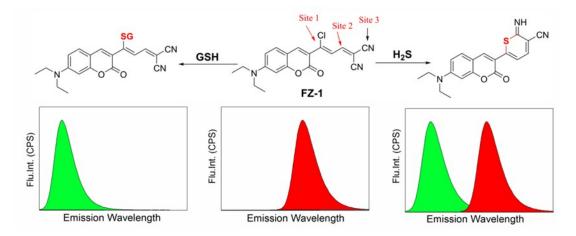


Fig. 3 The spectral sensing properties of the probe FZ-1 for H_2S and GSH

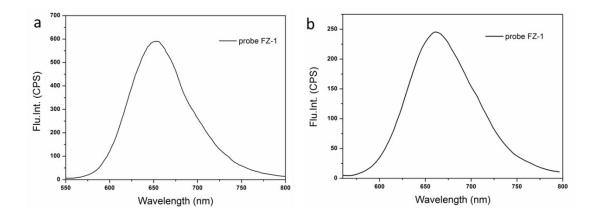


Fig. 4 The fluorescence spectrum of free probe FZ-1, (a) in the CH₃CN/PBS buffer solution (v/v 1:1, 10 mM, pH=7.4); (b) the in DMSO/PBS buffer solution (v/v=1:1, 10 mM, pH=7.4). $E_x = 530$ nm, Slits: 5/5 nm.

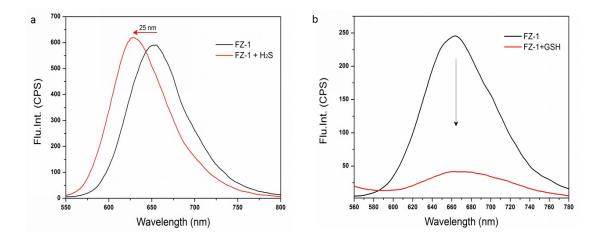
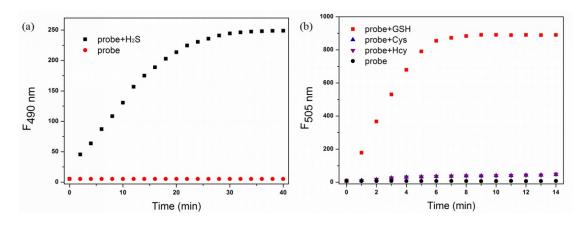



Fig. 5 The fluorescence spectrum of probe FZ-1 react with H₂S and GSH respectively. (a) probe FZ-1 react with H₂S in the CH₃CN/PBS buffer solution (v/v 1:1, 10 mM, pH=7.4); (b) probe FZ-1 react with GSH in the DMSO/PBS buffer solution (v/v 1:1, 10 mM, pH=7.4). $E_x = 530$ nm, Slits: 5/5 nm.

Fig. 6 (a) The fluorescence intensity changes of probe **FZ-1** (10 μ M) treated with H₂S (50 μ M) at 490 nm in the CH₃CN/PBS buffer solution, (b) The fluorescence intensity changes of probe **FZ-1** (10 μ M) treated with GSH, Cys and Hcy (50 μ M) at 505 nm in the DMSO/PBS buffer solution. E_x = 530 nm, Slits: 5/5 nm.

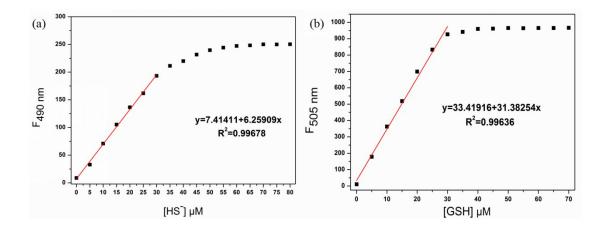
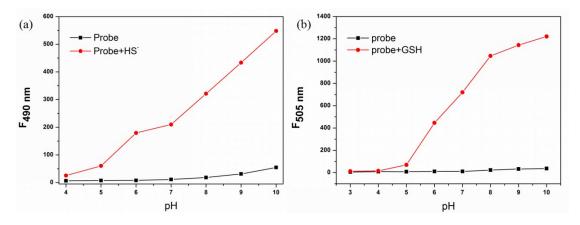
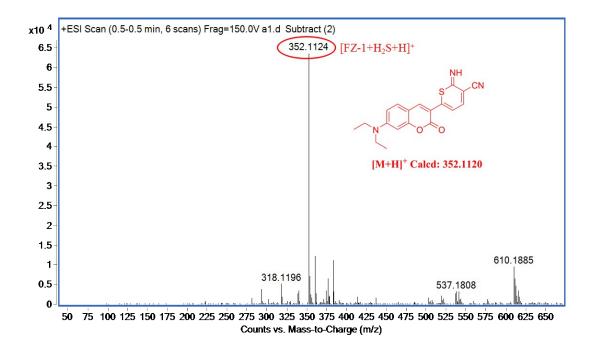




Fig. 7 (a) The working curve of probe FZ-1 at 490 nm with H_2S , (b) The working curve of probe FZ-1 at 505 nm with GSH. $E_x = 530$ nm, Slits: 5/5 nm.

Fig. 8 (a) Effect of pH on the fluorescence increment of probe **FZ-1** (10 μ M) treatment with H₂S (50 μ M) in the CH₃CN/PBS buffer (v/v=1:1) solution. (b) effect of pH on the fluorescence increment of probe **FZ-1** (10 μ M) treatment with 50 μ M of GSH, Cys and Hcy in the DMSO/PBS buffer (v/v=1:1) solution.

Fig. 9 HRMS spectrum of $[FZ-1+H_2S+H]^+$

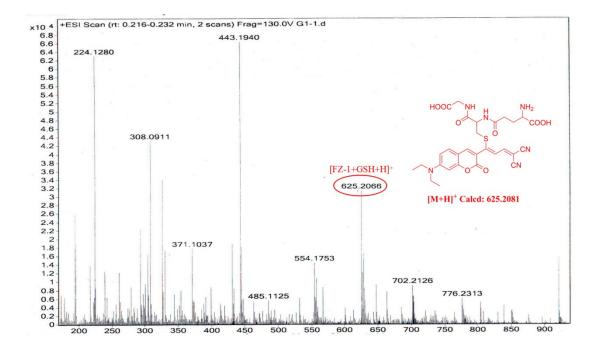


Fig. 10 HRMS spectrum of [FZ-1+ GSH+H]⁺

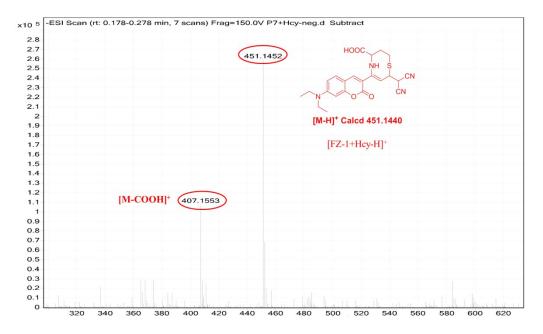


Fig. 11 HRMS spectrum of [FZ-1+ Hcy-H]⁺

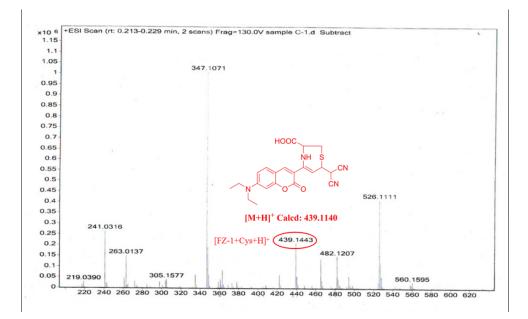


Fig. 12 HRMS spectrum of [FZ-1+ Cys+H]⁺

Results from Cell Viability Assays



Fig. 13 Cell viability of MCF-7 cells treated with different concentrations of probe FZ-1 (0, 2.5, 5.0, 7.5 and 10.0 μ M) for 12 h. The cell viability was observed via CCK-8 assay.

Probes	Detection system	Target	Response time	Detection limit	Reference
HO-SS-O	CH ₃ CN/HEPES buffer (1 : 1, v/v, 20 mM, pH 7.4)	GSH	200 min	0.85 μM	Chem. Sci., 2015, 6, 2584
	DMSO/H ₂ O(1 : 1, v/v) with a PBS buffer solution (10 mM, pH = 7.4).	GSH	5 min	0.018 μM	Chem. Commun., 2014, 50, 1751
CI CHO CHO O O	PBS buffer (pH 7.4) containing 10% DMSO	GSH	20 min	0.38 μΜ	Biosens. Bioelectro n. 2015, 72, 275

Table S1. Comparison of fluorescent probe for GSH and H2S

	PBS buffer (pH 7.4) containing 1% DMSO	H ₂ S	120 min	0.5 μΜ	Chem. Commun., 2012, 48, 10669.
N-B-F F	PBS buffer (pH 7.4) containing 30% CH ₃ CN	H_2S	9 min	0.15 μΜ	Chem. Commun., 2015, 51, 13135.
	PBS buffer (pH 7.4) containing 10% CH ₃ CN	H ₂ S	40 min	2.46 µM	Anal. Chem., 2016, 88 (10), 5476.
	PBS buffer (pH 7.4) containing 50% CH ₃ CN or DMSO	H ₂ S and GSH	10 min	H ₂ S: 0.075 μM GSH: 0.28 μM	This work

References

- 1. M. Li, W. Feng, H. Zhang and G. Feng, *Sens. Actuators. B*, 2017, **243**, 51-58.
- 2. Y. He, Z. Li, B. Shi, Z. An, M. Yu, L. Wei and Z. Ni, *Rsc Adv.*, 2017, 7, 25634-25639.