Supporting Information

A pH responsive AIE probe for enzyme assays

Leilei Shi,^{1,†} Yufeng Liu,^{1,†} Qian Wang,¹ Tiankuo Wang,² Yubin Ding,¹ Yi Cao,² Zhe Li,¹ and Hui Wei,^{1,3,*}

¹ Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu, 210093, China.

² School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China.

³ Collaborative Innovation Center of Chemistry for Life Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu, 210093, China.

Email: weihui@nju.edu.cn; Fax: +86-25-83594648; Tel: +86-25-83593272; Web: http://weilab.nju.edu.cn.

[†] L.S. and Y.L. contributed equally.

Table of Contents

Figure S1. ¹H NMR of TPE-NH₂ in DMSO-d₆.

Figure S2. ¹H NMR of TPE-Leu in DMSO-d₆.

Figure S3. ¹³C NMR of TPE-Leu in DMSO-d₆.

Figure S4. HPLC Chromatogram of TPE-Leu.

Figure S5. Mass spectrum of TPE-Leu.

Figure S6. Plot of I/I₀ of 10 μ M **TPE-Leu** in DMSO/PBS buffer with different volume fractions of PBS buffer, where I₀ is the fluorescence intensity of **TPE-Leu** in 99.5% PBS buffer. λ_{ex} =320 nm.

Figure S7. Plots of fluorescence intensity of 10 μ M TPE-NH₂ at 455 nm versus pH values. λ_{ex} =320 nm.

Figure S8. Selectivity of 10 μ M **TPE-Leu** in pH=7 DMSO/buffer (1:9, v:v) over 0.1 mM Cu²⁺, Fe²⁺, and Fe³⁺.

Figure S9. Selectivity of 10 μ M TPE in pH=7 DMSO/buffer (1:9, v:v) over 0.1 mM/0.5 mM Cu²⁺, Fe²⁺, and Fe³⁺.

Figure S10. Selectivity of 10 μ M TPE-NH₂ in pH=7 DMSO/buffer (1:9, v:v) over 0.1 mM/0.5 mM Cu²⁺, Fe²⁺, and Fe³⁺.

Figure S11. Fluorescence intensity of **TPE-Leu** (10 μ M) in pH=7 DMSO/buffer (1:9, v/v) in the absence (1) or presence of 0.1 mM Cu²⁺ (2), 0.1 mM Cu²⁺ and EDTA (3), 0.1 mM Fe³⁺ (4), and 0.1 mM Fe³⁺ and EDTA (5). λ_{ex} =320 nm.

Figure S12. Photo of TPE-Leu in different pH buffers.

Figure S13. AFM images of (A) **TPE-Leu** in DMSO/buffer (5 mM pH=4 NaOAc) (1:9, v:v) and (B) **TPE-Leu** in DMSO/buffer (5 mM pH=10 PBS) (1:9, v:v). (C) and (D) were the corresponding cross-sectional profiles.

Figure S14. Fluorescence responses of 10 μ M TPE-Leu to different pH values and fluorescence quantum yields were measured with hymecromone ($\Phi = 0.74$ in pH 5.98) as the reference.

Figure S15. (A) Plots of normalized fluorescence intensity of 10 μ M **TPE-Leu** at 455 nm in the presence of different concentrations of AChE in pH=9.5 DMSO/buffer (5 mM pH=9.5 PBS) (1:9, v:v). (B) Plots of normalized fluorescence intensity of 10 μ M **TPE-Leu** at 455 nm in the presence of different concentrations of urease in pH=5.5 DMSO/buffer (5 mM pH=5.5 NaOAc) (1:9, v:v). (C) and (D) were the linear fit of (A) and (B), respectively.

Table S1. Comparison of the current AIE probe with reported methods.

Figure S1. ¹H NMR of TPE-NH₂ in DMSO-d₆.

Figure S2. ¹H NMR of TPE-Leu in DMSO-d₆.

Figure S3. ¹³C NMR of TPE-Leu in DMSO-d₆.

Figure S4. HPLC Chromatogram of TPE-Leu.

Figure S5. Mass spectrum of TPE-Leu.

Figure S6. Plot of I/I_0 of 10 μ M **TPE-Leu** in DMSO/PBS buffer with different volume fractions of PBS buffer, where I_0 is the fluorescence intensity of **TPE-Leu** in 99.5% PBS buffer. λ_{ex} =320 nm.

Figure S7. Plots of fluorescence intensity of 10 μ M TPE-NH₂ at 455 nm versus pH values. λ_{ex} =320 nm.

Figure S8. Selectivity of 10 μ M **TPE-Leu** in pH=7 DMSO/buffer (1:9, v:v) over 0.1 mM Cu²⁺, Fe²⁺, and Fe³⁺.

We noticed that Cu^{2+} , Fe^{2+} and Fe^{3+} influenced the fluorescence intensity of **TPE-Leu**. From the emission spectra, it was observed that Cu^{2+} , Fe^{2+} , and Fe^{3+} decreased the fluorescence intensity of **TPE-Leu** (Figure S8). More interestingly, the fluorescence intensity of **TPE and TPE-NH**₂ was also decreased in the presence of Cu^{2+} , Fe^{2+} and Fe^{3+} , especially in high concentrations (Figure S9 and S10). The reasons for these phenomena were still not clear currently and is still under investigation. However, we demonstrated that the interference of Cu^{2+} and Fe^{3+} could be eliminated by using ethylene diamine tetraacetic acid (EDTA) (Figure S11). Since Fe^{2+} is not very stable and easily to be oxidized into Fe^{3+} , its interference could be eliminated by bubbling oxygen gas. All of these results indicated that **TPE-Leu** was highly selective to pH over other potential competing species and thus could be applied in the complicated biosystems for bioanalysis.

Figure S9. Selectivity of 10 μ M TPE in pH=7 DMSO/buffer (1:9, v:v) over 0.1 mM/0.5 mM Cu²⁺, Fe²⁺, and Fe³⁺.

Figure S10. Selectivity of 10 μ M TPE-NH₂ in pH=7 DMSO/buffer (1:9, v:v) over 0.1 mM/0.5 mM Cu²⁺, Fe²⁺, and Fe³⁺.

Figure S11. Fluorescence intensity of **TPE-Leu** (10 μ M) in pH=7 DMSO/buffer (1:9, v/v) in the absence (1) or presence of 0.1 mM Cu²⁺ (2), 0.1 mM Cu²⁺ and EDTA (3), 0.1 mM Fe³⁺ (4), and 0.1 mM Fe³⁺ and EDTA (5). λ_{ex} =320 nm.

Figure S12. Photo of TPE-Leu in different pH buffers.

Figure S13. AFM images of (A) **TPE-Leu** in DMSO/buffer (5 mM pH=4 NaOAc) (1:9, v:v) and (B) **TPE-Leu** in DMSO/buffer (5 mM pH=10 PBS) (1:9, v:v). (C) and (D) were the corresponding cross-sectional profiles.

As shown in Figure S13, the thickness of **TPE-Leu** in acidic or basic condition was estimated to be ca. 3 - 4 nm and 20 - 25 nm, respectively, indicating the deaggregation/aggregation of **TPE-Leu**.

Figure S14. Fluorescence responses of 10 μ M **TPE-Leu** to different pH values and fluorescence quantum yields were measured with hymecromone ($\Phi = 0.74$ in pH 5.98) as the reference.

Fluorescence quantum yields (Φ) of **TPE-Leu** in different pH buffers were measured with hymecromone ($\Phi = 0.74$ in pH 5.98) as the reference¹.

Figure S15. (A) Plots of normalized fluorescence intensity of 10 μ M **TPE-Leu** at 455 nm in the presence of different concentrations of AChE in pH=9.5 DMSO/buffer (5 mM pH=9.5 PBS) (1:9, v:v). (B) Plots of normalized fluorescence intensity of 10 μ M **TPE-Leu** at 455 nm in the presence of different concentrations of urease in pH=5.5 DMSO/buffer (5 mM pH=5.5 NaOAc) (1:9, v:v). (C) and (D) were the linear fit of (A) and (B), respectively.

Strategy	probe	Dynamic range (mU/mL)	Detection limit (mU/mL)	Ref.
Fluorescence	AuNCs–Cu ²⁺	AChE: 0.05 – 2.5	AChE: 0.05	2
	C-dots-AgNPs	AChE: 0.025 – 2	AChE: 0.021	3
	AuNCs	Urease: 2.2 – 55	Urease: 0.55	4
	TPE-Leu	AChE: 0 – 1000	AChE: 8.71	this work
		Urease: 0 – 500	Urease: 6.39	
Nanozyme	AuNCs	Urease: 1.8 – 90	Urease: 1.8	5
	PAA-CeO ₂	AChE: 0.263 – 50	AChE: 0.263	6
	Citrate-CeO ₂	AChE: 0 – 1400	AChE: 3.5	7
		Urease: 0 – 1500	Urease: 2.5	

Table S1. Comparison of the current AIE probe with reported methods.

Abbreviations

AgNPs: Ag nanoparticles

AuNCs: gold nanoclusters

C-dots: carbon dots

PAA: poly (acrylic acid)

References

1. L. J. Xie, Y. H. Chen, W. T. Wu, H. M. Guo, J. Z. Zhao, X. R. Yu, *Dyes Pigments*, 2012, 92, 1361-1369.

2. J. Sun, X. R. Yang, Biosens. Bioelectron., 2015, 74, 177-182.

3. D. Zhao, C. X. Chen, J. Sun, X. R. Yang, Analyst, 2016, 141, 3280-3288.

4. H. H. Deng, G. W. Wu, Z. Q. Zou, H. P. Peng, A. L. Liu, X. H. Lin, X. H. Xia, W. Chen, *Chem. Commun.*, 2015, 51, 7847-7850.

5. H. H. Deng, G. L. Hong, F. L. Lin, A. H. Liu, X. H. Xia, W. Chen, Anal. Chim. Acta, 2016, 915, 74-80.

6. S. X. Zhang, S. F. Xue, J. J. Deng, M. Zhang, G. Y. Shi, T. S. Zhou, *Biosens. Bioelectron.*, 2016, 85, 457-463.

7. H. J. Chen, S. L. Lin, F. Muhammad, Y. W. Lin, H. Wei, ACS Sens., 2016, 1, 1336–1343.