Supplementary information

[Mn₂(bpmp)]³⁺ complex as an artificial peroxidase and its applications in colorimetric pyrophosphate sensing and cascade-type pyrophosphatase assay

Youngkeun Lee,^{\dagger} Soyeon Yoo,^{\dagger} Seungyoon Kang, Sukwon Hong^{*} and Min Su Han^{*}

Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea

* Corresponding author. E-mail: happyhan@gist.ac.kr; shong@gist.ac.kr;
Tel.: +82 62 715 2848; fax: +82 62 715 2866
† Y. L. and S. Y. contributed equally to the work in this paper

Determination of optimal pH condition of ABTS/H₂O₂/[Mn₂(bpmp)]³⁺ system

Fig. S1 Absorbance of ABTS (1 mM) in a various pH buffer solution containing $[Mn_2(bpmp)]^{3+}$ complex (2 μ M) and H_2O_2 (10 mM) at 417 nm: pH 4 - 5 (acetate, 20 mM), pH 6 (citrate, 20 mM), and pH 7 - 9 (Tris, 20 mM).

Determination of optimal conditions of ABTS/H₂O₂/[Mn₂(bpmp)]³⁺ system for application

Fig. S2 Absorbance changes of $ABTS/H_2O_2/[Mn_2(bpmp)]^{3+}$ system in various concentrations of $[Mn_2(bpmp)]^{3+}$ complex (from 0 to 10 μ M) at 2 min. Inset: Plot of absorbance at 417 nm *versus* $[Mn_2(bpmp)]^{3+}$ complex concentrations at 2 min. [ABTS] = 1 mM and $[H_2O_2]$ = 10 mM in a buffer solution (Tris, 20 mM, pH 7.0).

Fig. S3 Absorbance changes of ABTS/H₂O₂/[Mn₂(bpmp)]³⁺ system in various concentrations of H₂O₂ (from 0 to 10 mM) at 2 min. Inset: Plot of absorbance at 417 nm *versus* H₂O₂ concentrations at 2 min. [ABTS] = 1 mM and [[Mn₂(bpmp)]³⁺] = 2 μ M in a buffer solution (Tris, 20 mM, pH 7.0).

Determination of detection limit for PPi in the ABTS/H₂O₂/[Mn₂(bpmp)]³⁺ system

Fig. S4 Plot of the absorbance at 417 nm against the logarithm of PPi concentrations.

The limit of detection (LOD) for PPi was obtained from the low concentration range of PPi (0 ~ 0.8 μ M) in the PPi titration (see Fig. 3). As shown in Fig. S4, a linear function was obtained when the x-axis is log[PPi] and the y-axis is A - A₀. The LOD was estimated from the x-intercept of this function.

A₀ is the absorbance in the absence of PPi. Intercept = - 0.949 Slope = - 0.138 $R^2 = 0.961$ $A - A_0 = -0.138 \times Log[PPi] - 0.949$ LOD = 0.133 µM = 133 nM

Calibration curve of PPi titration

Fig. S5 Calibration curve of PPi titration in the ABTS/H₂O₂/[Mn₂(bpmp)]³⁺ system.

 $A_1 = 0.685$ $A_2 = 0.067$ $x_0 = 1.149$

dx = 0.184

- $R^2 = 0.998$
- $y = 0.067 + 0.618 \times [1 + e^{(x-1.149)/0.184]}$

ATP titration using the ABTS/H₂O₂/[Mn₂(bpmp)]³⁺ system

Fig. S6 Absorbance changes of $ABTS/H_2O_2/[Mn_2(bpmp)]^{3+}$ system in the presence of various concentrations of ATP and PPi (from 0.0 to 2.0 μ M) at 2 min. [ABTS] = 1 mM, [H₂O₂] = 10 mM, and [[Mn₂(bpmp)]³⁺] = 2 μ M in a buffer solution (Tris, 20 mM, pH 7.0).

Determination of detection limit for PPase in the ABTS/H₂O₂/[Mn₂(bpmp)]³⁺ system

Fig. S7 Plot of the absorbance at 417 nm against the logarithm of PPase concentrations.

The LOD for PPase was obtained from the low concentration range of PPi (0 ~ 3 U/mL) in the PPase titration (see Fig. 5). As shown in Fig. S6, a linear function was obtained when the x-axis is log[PPase] and the y-axis is k_{obs} - $k_{obs,0}$. The LOD was estimated from the x-intercept of this function.

 $k_{obs,0}$ is the k_{obs} value in the absence of PPase. Intercept = 0.00958 Slope = 0.00152 $R^2 = 0.98322$ $k_{obs} - k_{obs,0} = 0.00152 \times Log[PPase] - 0.00958$ LOD = 0.49816 U/mL

NMR data

Fig. S8 ¹H NMR spectrum (400 MHz) of 2,6-Bis(chloromethyl)-4-methoxyphenol in CDCl₃

Fig. S9 ¹H NMR spectrum (400 MHz) of H-bpmp in $CDCl_3$

Fig. S10 13 C NMR spectrum (100 MHz) of H-bpmp in CDCl₃

Mass data

Fig. S11 Mass spectrum of [Mn₂(bpmp)(OAc)₂](ClO₄) complex in acetonitrile.

Fig. S12 IR spectra of H-bpmp (blue line) and [Mn₂(bpmp)(OAc)₂](ClO₄) complex (red line).