SUPPORTING INFORMATION

Vibrational circular dichroism (VCD) methodology for the measurement of enantiomeric excess in chiral compounds in solid phase and for the complementary use of NMR and VCD techniques in solution: the camphor case

María Mar Quesada-Moreno,^a Albert Virgili,^b Eva Monteagudo,^b Rosa M. Claramunt,^c Juan Ramón Avilés Moreno,^d Juan Jesús López-González,^{*a} Ibon Alkorta^e and José Elguero^e

- a Grupo de Investigación Química Física Teórica y Experimental (FQM-173), Departamento de Química Física y Analítica, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus de Las Lagunillas, E-23071 Jaén, Spain
- *b* Servei de Ressonància Magnètica Nuclear and Departament de Química Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- c Departamento de Química Orgánica y Bio-Orgánica, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, Senda del Rey, 4, E-28040 Madrid, Spain
- d Departamento de Sistemas Físicos, Químicos y Naturales, Facultad de Ciencias Experimentales, Universidad Pablo de Olavide, Carretera de Utrera Km 1, E-41013 Sevilla, Spain
- e Instituto de Química Médica, Centro de Química Orgánica "Lora-Tamayo", CSIC, Juan de la Cierva, 3, E-28006 Madrid, Spain
- * Corresponding author.

E-mail address: jjlopez@ujaen.es

SI1) Table with experimental wavenumbers (cm⁻¹) of the observed bands in the IR and VCD spectra of *R*-(+)-camphor in CCl₄ solution and solid phase (nujol mulls) and their assignment using the B3LYP/cc-pVDZ calculation according to the work of the reference 52 (J. R. Avilés Moreno *et al., Asian J. Spectrosc.*, 2010, 14, 1–21).

MAIN SPECTRAL FEATURES ^a					
II	ર	VC	^C D		
Wavenumbers, cm ⁻¹		Wavenumbers, cm ⁻¹		Assignment	
(relative intensity)		(sign)			
CCl ₄	Nujol	CCl ₄	Nujol		
1481 (w)	-	-	-	CH ₂ sciss.	
1470 (w)	-	1470 (+)	-		
1440 (m)	_	1453 (+)	_	CH ₂ sciss. + asym. CH ₃ def.	
		1443 (-)			
1417 (m)	-	1417 (-)	-	CH ₂ sciss.	
1390 (m)	-	1390 (-)	-	sym CH, def	
1372 (m)	-	1372 (-)	-	syni. Cri3 dei.	
1323 (m)	-	1323 (+)	-	CH rock. + asym. six member ring torsion + CH_2 wagg.	
1299 (w)		1297 (-)	1297 (-)	CH rock. + asym. six member ring torsion + CH_2 wagg.	
1277	(m)	1277 (+)	1277 (+)	CH def. + CH rock.	
1256	(w)	-	-	-	
1246 (w)		1245 (+)	1245 (+)	CH ₂ twist. + CH ₂ rock. + CH ₂ wagg. + C-C str.	
1219 (w)		1219 (-)	-	CH_2 twist. + CH def. + CH ₂ wagg. + C-C str.	
1197 (w)		1195 (-)	1195 (-)	CH def. + CH ₃ rock. + CH ₂ twist.	
1166 (w)		1164 (+)	1167 (+)	CH def. + asym. six member ring torsion + CH ₂ wagg.	
1152 (vw)		1151 (-)	1152 (-)	C-C str.	
1128 (vw)		1127 (+)	1128 (+)	CH_3 rock. + CH_2 twist. + C-C str.	
1093 (w)		1093 (-)	-	CH ₃ rock. + asym. six member ring torsion	
1079 (w)		1079 (-)	-	CH ₂ twist.	
1045 (m)		1046 (-)	1046 (-)	C-C str. + trigonal six member ring def.	
1021 (m)		1020 (-)	1020 (-)		
1010 (sh)		1010 (+)	1010 (+)		
978 (vw)	978 (w)	980 (-)	980 (-)	C-C str. + CH_3 rock.	
951 (w)		948 (-)	949 (-)		
935 (w)		933 (+)	933 (+)		

925 (w)	925 (+)	925 (+)	C-C str. + CH ₃ rock. + asym. six member ring torsion + CH ₂ rock.
913 (vw)	912 (-)	912 (-)	trigonal six member ring def. + C-C str.

^a s, strong; m, medium; w, weak; vw, very weak; sh, shoulder.

SI2) Linear regressions of the intensity of several VCD bands ($\Delta Abs.$) vs. % ee

SI2a) IR-VCD spectra in CCl₄ solution

We have plotted the intensity of several VCD bands ($\Delta Abs.$) vs. % *ee* and carried out a linear regression for each band. It can be seen that all the linear regressions show a good correlation coefficient (R^2) > 0.99, except one of the bands that shows a correlation coefficient of 0.986. The $\Delta Abs.$ values have been multiplied by 10⁶ to have larger coefficients. We have also performed the interpolation of $\Delta Abs.$ of the blind sample for each band, obtaining the corresponding % *ee*.

Band at 1296.9 cm⁻¹

Abs. (blind sample): -32.18

 $-32.18 = -60.617 \text{ x} - 2.1152 \rightarrow \text{x} = \% \text{ ee} = 49.6$

Band at 1244.8 cm⁻¹

% ee

100

60

20

-100

-60

-20

0

ΔAbs. (blind sample): 50.00

 $50.00 = 96.279 \text{ x} + 2.2078 \rightarrow \text{x} = \% \text{ ee} = 49.6$

Band at 1046.2 cm⁻¹

ΔAbs. (blind sample): -69.23

 $-69.23 = -138.65 \text{ x} + 1.2212 \rightarrow \mathbf{x} = \% \text{ ee} = 50.8$

Band at 947.8 cm⁻¹

ΔAbs. (blind sample): -39.55

 $-39.55 = -71.718 \text{ x} - 2.4604 \rightarrow \text{x} = \% \text{ ee} = 51.7$

Band at 933.4 cm⁻¹

ΔAbs. (blind sample): 34.99

 $34.99 = 62.208 \text{ x} + 2.5834 \rightarrow \text{x} = \% \text{ ee} = 52.1$

Band at 924.7 cm⁻¹

ΔAbs. (blind sample): 41.24

 $41.24 = 82.498 \text{ x} - 0.2502 \rightarrow \text{x} = \% \text{ ee} = 50.3$

SI2b) IR-VCD spectra in nujol mull

We have also plotted the intensity of several VCD bands ($\Delta Abs.$) vs. % ee and carried out a linear regression for each band. It can be seen that all the linear regressions show a good correlation coefficient (R^2) > 0,99.

Band	at	1244.8	cm ⁻¹

% ee	ΔAbs.
100	99.66
60	70.09
20	30.58
-100	-99.66
-60	-60.81
-20	-16.24
0	12.11

ΔAbs. (blind sample): 54.36

 $54.36 = 102.58 \text{ x} + 5.1044 \rightarrow \text{x} = \% \text{ ee} = 48$

Band at 933.4 cm⁻¹

% ee	ΔAbs.
100	61.65
60	45.48
20	12.50
-100	-61.65
-60	-31.88
-20	-13.23
0	7.27

ΔAbs. (blind sample): 31.44

 $31.44 = 62.453 \text{ x} + 2.8781 \rightarrow \text{x} = \% \text{ ee} = 45.7$

Band at 924.7 cm⁻¹

ΔAbs. (blind sample): 38.04

 $38.04 = 83.227 \text{ x} - 3.8893 \rightarrow \text{x} = \% \text{ ee} = 50.4$