Supplementary Information for:

Simplified Determination of Complex Stoichiometry for Colorimetric Metal Indicators by Inkjet Printing

Kento Kuwahara, Kentaro Yamada, Koji Suzuki and Daniel Citterio*

Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan. Fax: +81 45 566 1568; Tel: +81 45 566 1568

*To whom correspondence should be addressed. Email: citterio@applc.keio.ac.jp

Table of Contents

Figure S1 Determination procedure for inkjet-dispensed ink volumes	S 3
Figure S2 Modification of the printing colour profile in Adobe Photoshop	S 4
Figure S3 Acid Blue 9 concentration-dependent absorbance at 628 nm	S10
Figure S4 Calibration curve used for inkjet-printed liquid volume calculation	S 11
Figure S5 Ink ejection from "non-intended" cartridges when using a default colour profile	S12
Figure S6 Surface and cross-sectional views of filter papers with inkjet-deposite reagents	d S13
Figure S7 Inkjet-based Job plots with and without interval time between printing cycles	s S14
Table S1 Detailed inkjet-printing conditions of reagents for Job plot analysis	
on paper	S15
Table S2 Evaluation of Acid Blue 9 rehydration efficiency	S16
Table S3 Properties of the examined indicator-metal ion complexes	S17
Table S4 Mole fractions of highest complex concentrations	S18
References	S19

Figure S1. Schematic outline of the determination method of inkjet-ejected liquid volume. The figure shows the case of the magenta ink cartridge as an example. An aqueous dye solution filled in the magenta reservoir was inkjet-printed onto two sheets of OHP film (7 x 3 cm²) fixed inside the printer. For the recognition of the correct paper feeding by the printer, a copy paper strip ("Paper strip" in the figure) was fed from the paper feeder and was passed between the fixed OHP sheets. Inkjet-printing of dye solutions onto an A4-sized OHP sheet using the "standard" feeding mode is not achievable, because the paper feeding rollers inside the printer unavoidably come into contact with the inks deposited on the surface of the OHP film.

A)

Custom CMYK	Ink Colors		×
Name: SWOP (C	d), 20%, GCR, Medium	à la	OK
Ink Options			
Ink Colors:	SWOP (Coated)	~	Cancel
Dot Gain:	Custom		_
	Other	Custom	۱
Separation Optio	AD-LITHO (Newsprint) Dainippon Ink		
Separation Type:	Eurostandard (Coated) Eurostandard (Newsprint)	. I	
Black Generation:	Eurostandard (Uncoated)		
Black Ink Limit:	SWOP (Coated) SWOP (Newsprint) SWOP (Uncoated)		
Total Ink Limit:	Toyo Inks (Coated Web O	(ffset)	
UCA Amount:	Toyo Inks (Coated) Toyo Inks (Dull Coated) Toyo Inks (Uncoated)		

Ink Colors Click	×	Color Picker (Progressive Color)	×
Y X Y C: 77.75 0.2198 0.3282 M: 28.31 0.3146 0.1560 Y: 93.94 0.4271 0.4956 MY: 22.25 0.6409 0.3317 CY: 71.69 0.3100 0.5854 CM: 6.06 0.1233 0.0530 CMY: 0.00 0.3333 0.3333 W: 99.96 0.3127 0.3290 K: 0.00 0.3333 0.3333 L*a*b* Coordinates Estimate Overprints	OK Cancel	Setting RGB value	OK Cancel Add to Swatches Color Libraries O L: 91 O a: -51 O b: -15

Set value

	C	М	Y	MY	CY	CM	CMY	W	К
R	0	255	255	255	0	0	0	255	0
G	255	0	255	0	255	0	0	255	0
В	255	255	0	0	0	255	0	255	0

B)

Custom CMYK		×
Name: <u>Color Profile</u> Ink Options	e for printing reagents Dot Gain	ОК
Ink Colors:	Other ~	Cancel
Dot Gain:	Curves ~ %	
Separation Optio	Curves Curves	
Separation Type:	• GCR UCR	
Black Generation:	None v	
Black Ink Limit:	0 %	
Total Ink Limit:	400 %	
UCA Amount:	0 %	
UCA Amount:	0 %	

Dot Gain Curves							×
, 8 - 8	2:		%	40:	97.8	%	ОК
_₽	4:		%	50:	99	%	
4	6:		%	60:	99.5	%	Cancel
	8:		%	70:	99.7	_ %	
	10:	68	%	80:	99.8	_ %	
	20:	86.5	%	90:	99.9	%	
	30:	94	%				🖸 Cyan
1	\checkmark						🔿 Magenta
							○ Yellow
Setting "Dot Gain Curves"						s″	🔘 Black

Set values

	Cyan	Magenta	Yellow	Black
10	68	66.5	58	60
20	86.5	85	81	84
30	94	92.9	90.9	91
40	97.8	96.9	96.3	94.6
50	99	98.6	98.2	96.3
60	99.5	99.4	99.1	97.5
70	99.7	99.6	99.6	98.4
80	99.8	99.8	99.9	99.3
90	99.9	99.9	100	99.8

Figure S2. Screenshots of the Adobe Photoshop software for colour profile editing; A) procedure for editing the "Ink Colors" and "Separation Option" settings; B) procedure for editing the "Dot Gain" setting.

Figure S3. Calibration curve representing the relationship between the concentration of Acid Blue 9 in aqueous solution and absorbance at 628 nm

Figure S4. The calibration curve for determination of ejected ink volume from the absorbance of Acid Blue 9 dye dissolved into water.

Figure S5. Ink ejection volumes from non-intended cartridges when using a common colour profile (Coated GRACOL 2006). The graph shows the ejected ink volumes from the cyan (blue curve), magenta (pink curve) and yellow (yellow curve) cartridges, respectively. The software set printing colour values were varied between 0 and 100 for cyan while magenta and yellow values were kept at 0 in the colour printing mode (*i.e.* ink dispensing intended from the cyan cartridge, only). Although the ink volume dispensed from the "intended" cyan cartridge increased with increasing C values, the use of the common colour profile resulted in ink ejection also from "non-intended" magenta and yellow cartridges, making precise control of ink dispensing ratios unachievable.

Figure S6: Surface and cross-sectional views of filter papers with inkjetdeposited reagents for the Nitro-PAPS/Ni²⁺ system after the completed printing process.

Figure S7. Comparison of inkjet-based Job plots for the Nitro-PAPS/Ni $^{2+}$ system with and without an interval time between multiple reagent print cycles.

Grustan	Reagent inks			Buffer	Used colour		
System	Ink composition	Printing cycles	Solute wt%	Buffer condition	Printing cycles	coordinate	
Zincon	Zincon 2.0 mM aq.	5	0.100				
Z Incon	with 2 mM of NaOH	5	0.100	9.0	2	Red	
/Cu-	CuCl ₂ 2.0 mM aq.	5	2.69×10 ⁻²				
Nitro-PAPS	Nitro-PAPS 2.0 mM aq.	5	0.101	()	2	Crear	
/Ni ²⁺	NiCl ₂ 2.0 mM aq.	5	2.59×10 ⁻²	6.0	2	Green	
	BCS 4.0 mM aq.	10	0.226	6.0 (10 mM of			
BCS/Cu ⁺	ľ			ascorbic acid is	2	Grey	
	CuCl ₂ 4.0 mM aq.	10	5.38×10 ⁻²	added)			
	Tiron 50 mM aq.	5	1.66				
Tiron/Fe ³⁺	FeCl ₃ ·6H ₂ O 50 mM aq.	5	0.000	-	-	Grey	
	with 10 mM H_2SO_4	5	0.909				
Nitrogo DCAD	Nitroso-PSAP 2.0 mM aq.	10	6.05×10 ⁻²	7.5 (5 mM of			
/Fe ²⁺	FeCl ₃ ·6H ₂ O 2.0 mM aq.	10	0.101	ascorbic acid is	2	Red	
	with 10 mM H ₂ SO ₄	10	0.131	added)			

Table S1. Detailed inkjet-printing conditions of reagents for the Job plot analysis on paper.

		2	2		
Pipetted amount of Acid Blue 9		Absorbance at	D abydratad malas ^b	Dagawart	
Volume of 10 mM solution	Moles	629 nm ^a	Kenyulated moles	Recovery	
1 μL	10 nmol	0.643 ± 0.003	9.96 ± 0.05 nmol	99.6 %	

Table S2. Evaluation of Acid Blue 9 rehydration efficiency.

^{*a*} The average and standard deviations were calculated from four independent measurements. ^{*b*} Calculated based on the measured absorbance and the calibration curve shown in Figure S3. ^{*c*} Recovery (%) calculated as $100 \times$ (rehydrated mole/pipetted mole).

Indicator-metal ion	Colorimetric re	sponse of indicator	Reported stoichiometry	Deference
complex	Metal-free form	After complexation	(metal ion : indicator)	Kelelelice
Zincon/Cu ²⁺	Pink	Blue	1:1	1
Nitro-PAPS/Ni ²⁺	Orange	Purple	1:2	2
BCS/Cu ⁺	Colourless	Orange	1:2	3
Tiron/Fe ³⁺ at pH<2.5	Colourless	Blue	1:1	4
Nitroso-PSAP/Fe ²⁺	Red	Yellowish green	1:3	5

Table S3. Properties of the examined indicator-metal ion complexes.

	<u> </u>	· ·	/		
	Zincon/Cu ²⁺	Nitro-	BCS/Cu ⁺	Tiron/Fe ³⁺	Nitroso-
		PAPS/Ni ²⁺		pH<2.5	PSAP/Fe ²⁺
Absorbance-based	0.53	0.39	0.29	0.51	0.28
Inkjet-based	0.53	0.42	0.29	0.51	0.27
Expected	0.50	0.33	0.33	0.50	0.25

Table S4. Mole fractions of highest complex concentrations obtained by linear curve fitting (for details, see below).

Curve fitting method: A very simple curve fitting procedure has been applied to estimate the mole fraction of highest complex concentration. Independent of the actual shape of the plot, two linear regression curves were fitted into each job plot, and their intersection is reported as the mole fraction of highest complex concentration in the table above. Linear regression was performed between the maximum and minimum color intensities (inkjet-based data) or the minimum and maximum absorbance values (and the minimum color intensity (solution-based data), wherein the minimum color intensity and the maximum absorbance value was included into both line segments, as shown representatively for Tiron/Fe³⁺ in the graph below:

References

- (1) Rush, R. M.; Yoe, J. H. Anal. Chem. 1954, 26 (8), 1345–1347.
- (2) Boonchiangma, S.; Kukusamude, C.; Ngeontae, W.; Srijaranai, S. *Chromatographia* **2014**, *77* (3–4), 277–286.
- (3) Campos, C.; Guzmán, R.; López-Fernández, E.; Casado, Ángela. *Anal. Biochem.* **2009**, *392* (1), 37–44.
- (4) Harvey, A. E.; Manning, D. L. J. Am. Chem. Soc. 1950, 72 (10), 4488–4493.
- (5) Nakagawa, K.; Tsujimoto, T.; Nishino, S.; Teramoto, M.; Kawase, Y. Colorimetric method and reagent used for the same. U.S. Patent 8,574,896, Nov. 5, 2013.