Supporting Information For

A dinitro-functionalized metal-organic framework featuring visual and fluorogenic sensing of H₂S in living cells, human blood plasma and environmental samples

Soutick Nandi,^a Sooram Banesh,^b Vishal Trivedi,^b and Shyam Biswas^{*a}

^a Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039 Assam, India

^b Malaria Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039 Assam, India

* To whom correspondence should be addressed. E-mail: sbiswas@iitg.ernet.in. Tel: (+)91-3612583309. Fax: (+)91-3612582349.

Figure S1. ¹H NMR spectrum of H_2BDC -(NO₂)₂ ligand.

Figure S2. HR-MS spectrum of H₂BDC-(NO₂)₂ ligand.

Figure S3. ¹H NMR spectrum of H₂BDC-(NH₂)₂ ligand.

Figure S4. HR-MS spectrum of H₂BDC-(NH₂)₂ ligand.

Figure S5. FT-IR spectra of as-synthesized 1 (black) and activated (red) 1'.

Figure S6. N_2 adsorption (black circles) and desorption (red circles) isotherms of thermally activated 1' recorded at -196 °C.

Figure S7. TG curves of as-synthesized 1 (black) and activated 1' (red) recorded in an air atmosphere in the temperature range of 25-700 °C with a heating rate of 10 °C min⁻¹.

Figure S8. XRPD patterns of 1 in different forms: as-synthesized (a), thermally activated (b), after treatment with 1(M) HCl (c), acetic acid (d), DMF (e), water (f) and after H₂S sensing experiment (g).

Figure S9. Fluorescence response of 1' in presence of different analytes.

Figure S10. Fluorescence response of 1' towards H_2S in presence of other interfering analytes.

Figure S11. Change in the fluorescence intensity of 1' in HEPES buffer as a function of Na_2S concentration. The error bars indicate the standard deviations of three measurements.

Figure S12. Fluorescence response of 1' in presence of Na₂S-spiked human blood plasma. Na₂S was spiked as an internal standard. The error bars indicate the standard deviations of three measurements.

Figure S13. Morphological analysis of 1'-treated J774A.1 cells. Macrophage J774A.1 cells were treated with different concentrations of probe (0-100 μ M) for 24 h at 37 °C and cells were observed with Cytell cell imaging system (GE Healthcare).

Figure S14. Cytotoxic effect of 1' on J774A.1 survival. Ten thousand Macrophage J774A.1 cells were treated with different concentrations of probe (0-100 μ M) for 24 h at 37 °C and cellular viability was measured using MTT assay. The cellular viability of untreated cells was considered as 100% to calculate the viability of treated cells. (n=3, p<0.001).

Figure S15. HR-MS spectrum of 1' (digested in MeOH/HF) showing m/z peak at 254.9898 (negative ion mode), which corresponds to $(M-H)^{-1}$ ion $(M = mass of H_2BDC-(NO_2)_2 ligand)$.

Figure S16. HR-MS spectrum of Na₂S-treated **1'** (digested in MeOH/HF) showing m/z (negative ion mode) peaks at 254.9924 and 195.0440, which correspond to $(M-H)^-$ ion of H₂BDC-(NO₂)₂ ligand and reduced H₂BDC-(NO₂)₂ ligand i.e. H₂BDC-(NH₂)₂, respectively.

Figure S17. ¹H NMR spectra of (a) **1'** (digested in DMSO-d₆/HF), (b) Na₂S-treated **1'** (digested in DMSO-d₆/HF) and (c) H₂BDC-(NH₂)₂ ligand (in DMSO-d₆). In the spectrum of Na₂S-treated **1'**, a new peak arises at 7.18 ppm, which closely matches with the peak position (~7.24 ppm) for the aromatic protons of H₂BDC-(NH₂)₂ ligand. This observation clearly signifies the formation of the diamine compound i.e. (H₂BDC-(NH₂)₂) by reduction of the corresponding dinitro compound (i.e. H₂BDC-(NO₂)₂). In order to calculate the percent of conversion from nitro to amine compound, the peak corresponding to the two equivalent aromatic protons of the H₂BDC-(NO₂)₂ ligand is set to an integration of 1 and the newly generated peak is integrated accordingly. For Na₂S-treated **1'**, the new peak has an integration value of ~0.96 with respect to the two equivalent aromatic protons of the H₂BDC-(NO₂)₂ ligand. Hence, the percentage conversion of nitro to amine compound is ~48%.

probes for the hubicsechee detection of $\Pi_2 S$.								
Sl. No.	Sensor materials	Type of	Response	Detection Limit	Analyte	Ref.		
		Material	Time (s)					
1	Zr-UiO-66-(NO ₂) ₂	MOF	2400	14.14 μM	Na ₂ S	This work		
2	DUT-52-(NO ₂) ₂	MOF	3300	20.0 µM	Na ₂ S	1		
3	Ce-UiO-66-N ₃	MOF	760	12.2 μM	NaSH	2		
4	Ce-UiO-66-NO ₂	MOF	760	34.84 μM	NaSH	2		
5	CAU-10-N ₃	MOF	420	2.65 µM	Na ₂ S	3		
6	IRMOF-3-N ₃	MOF	< 120	28.3 μM	NaSH	4		
7	Zr-UiO-66-NO ₂	MOF	≈ 460	188 µM	Na ₂ S	5		
8	Zr-UiO-66-N ₃	MOF	180	118 μM	Na ₂ S	6		
9	MN-ZIF-90	MOF	-	-	-	7		
10	Al-TCPP-Cu	MOF	-	-	-	8		

Table S1. Comparison of the response time, detection limit and analyte used of various existing probes for the fluorescence detection of H_2S .

11	Al-MIL-101-N ₃	MOF	-	100 μM (UV- lamp excitation); 0.1 μM (laser excitation)	Na ₂ S	9
12	Eu ³⁺ /Cu ²⁺ @UiO-66- (COOH) ₂	MOF	30	5.45 μM	NaSH	10
13	NHS1	organic molecule	4800	20 nM	NaSH	11
14	Cy-N ₃	organic molecule	1200	0.08 µM	NaSH	12
15	SFP-1, SFP-2	organic molecule	7200, 14400	-	Na ₂ S	13
16	SHS-M1, SHS-M2	organic molecule	-	0.2 μM, 0.4 μM	Na ₂ S	14
17	probe 1	organic molecule	≈ 3600	2.4 µM	NaSH	15
18	SF4	organic molecule	-	125 nM	NaSH	16
19	WSP5	organic molecule	-	47 nM	NaSH	17
20	NIR-H ₂ S	organic molecule	-	$5 \times 10^{-8} \mathrm{M}$	NaSH	18
21	probe 1	organic molecule	10800	-	Na ₂ S	19
22	Cy–NO ₂	organic molecule	5400	2 µM	Na ₂ S	20
23	probe 1	organic molecule	2700	2.5 μM	Na ₂ S	21
24	RHP-2	organic molecule	2400	270 nM	Na ₂ S	22
25	HSN1, HSN2	organic molecule	5400, 2700	5-10 μM, 1-5 μM	H ₂ S	23
26	FS1	organic molecule	7200	5-10 μM	Na ₂ S	24
27	PI-N ₃	organic molecule	180	$8.79 \times 10^{-7} \text{ M}$	NaSH	25
28	Probe 1	organic molecule	1800	3.05 µM	NaSH	26
29	Probe 1	organic molecule	180-600	0.78 nM	NaSH	27
30	Probe 4	organic molecule	600	259 nM	Na ₂ S	28
31	Probe 1	organic molecule	180	0.13 μM	NaSH	29
32	TPE-Az	organic molecule	120	-	NaSH	30
33	AzMB-coumarin	organic molecule	1200-2400	100 μΜ	NaSH	31

34	Lyso-AFP	organic	1800	-	NaSH	32
		molecule				
35	SF1,	organic	3600	5-10 μM	NaSH	33
	SF2	molecule		-		
36	cpGFP-Tyr66pAzF	organic	420	-	NaSH	34
		molecule				
37	CLSS-1,	organic	-	$0.7 \pm 0.3 \ \mu M$,	NaSH	35
	CLSS-2	molecule		$4.6 \pm 2.0 \ \mu M$		
38	DNS-Az	organic	-	1 μM	Na ₂ S	36
		molecule				

Quantum yield measurement:

Quantum yield is defined as a ratio of the number of emitted photons from a sample as fluorescence to the number of photons absorbed from the excited light. The fluorescence quantum yield of the Na₂S-treated UiO-66-(NO₂)₂ (**1'**) was evaluated by Parker-Rees method³⁷ using quinine sulphate (in 0.5 M H₂SO₄) as a standard fluorophore. The Parker-Rees equation can be written as follows:

$$\phi_{\rm u} = (A_{\rm s} F_{\rm u} n_{\rm u}^2 / A_{\rm u} F_{\rm s} n_{\rm s}^2) \phi_{\rm s} \tag{1}$$

where ϕ_s is the quantum yield of the reference (quinine sulphate, 0.54) in 0.5 M H₂SO₄, ϕ_u is the quantum yield of Na₂S-treated **1'** in HEPES buffer medium, A_s and A_u are the absorbances of quinine sulphate and Na₂S-treated **1'** at the excitation wave-length (345 nm), respectively. To minimize the reabsorption of the fluorescence light passing through the samples, their absorbance maxima were kept less than 0.1. F_s and F_u are the areas of integrated fluorescence intensity of the quinine sulphate and Na₂S-treated **1'** when excited at the same excitation wavelength, respectively. The refractive indices of the solvents for sample and quinine sulphate are denoted by n_u and n_s, respectively (both are water-based medium, so n_u = n_s). The obtained quantum yield according to equation (**1**) for Na₂S-treated UiO-66-(NO₂)₂ (i.e. UiO-66-(NH₂)₂) is 0.04."

1 4010							
S1.	Sample Name	Excitation	Absorbance (A)	Area of	Quantum		
No.		Wavelength		Integrated	Yield (ϕ)		
		λ_{ex} (nm)		Fluorescence			
				Intensity (F)			
1	Quinine Sulphate	345	0.081	6.02×10^{8}	0.54		
2	UiO-66-(NH ₂) ₂	345	0.058	3.14×10^{7}	0.04		

Table S2. Photo-physical parameters of Na₂S-treated UiO-66-(NO₂)₂ (i.e. UiO-66-(NH₂)₂).

References:

- 1. R. Dalapati, S. N. Balaji, V. Trivedi, L. Khamari and S. Biswas, *Sens. Actuators., B*, 2017, **245**, 1039-1049.
- 2. A. Buragohain and S. Biswas, *CrystEngComm*, 2016, **18**, 4374-4381.
- 3. S. Nandi, H. Reinsch, S. Banesh, N. Stock, V. Trivedi and S. Biswas, *Dalton Trans.*, 2017, **46**, 12856-12864.
- 4. X. Zhang, J. Zhang, Q. Hu, Y. Cui, Y. Yang and G. Qian, *Appl. Surf. Sci.*, 2015, **355**, 814.
- 5. S. S. Nagarkar, A. V. Desai and S. K. Ghosh, Chem. Eur. J., 2015, 21, 9994-9997.
- 6. S. S. Nagarkar, T. Saha, A. V. Desai, P. Talukdar and S. K. Ghosh, *Sci. Rep.*, 2014, 4, 7053-7058.
- 7. H. Li, X. Feng, Y. Guo, D. Chen, R. Li, X. Ren, X. Jiang, Y. Dong and B. Wang, *Sci. Rep.*, 2014, **4**, 4366-4370.
- 8. Y. Ma, H. Su, X. Kuang, X. Li, T. Zhang and B. Tang, *Anal. Chem.*, 2014, **86**, 11459-11463.
- 9. A. Legrand, A. Pastushenko, V. Lysenko, A. Geloen, E. A. Quadrelli, J. Canivet and D. Farrusseng, *ChemNanoMat*, 2016, **2**, 866-872.
- 10. X. Zhang, Q. Hu, T. Xia, J. Zhang, Y. Yang, Y. Cui, B. Chen and G. Qian, *ACS Appl. Mater. Interfaces*, 2016, **8**, 32259–32265.
- 11. G.-J. Mao, T.-T. Wei, X.-X. Wang, S.-y. Huan, D.-Q. Lu, J. Zhang, X.-B. Zhang, W. Tan, G.-L. Shen and R.-Q. Yu, *Anal. Chem.*, 2013, **85**, 7875-7881.
- 12. F. Yu, P. Li, P. Song, B. Wang, J. Zhao and K. Han, *Chem. Commun.*, 2012, **48**, 2852-2854.
- 13. Y. Qian, J. Karpus, O. Kabil, S.-Y. Zhang, H.-L. Zhu, R. Banerjee, J. Zhao and C. He, *Nat. Commun.*, 2011, **2**, 495.
- 14. S. K. Bae, C. H. Heo, D. J. Choi, D. Sen, E.-H. Joe, B. R. Cho and H. M. Kim, *J. Am. Chem. Soc.*, 2013, **135**, 9915-9923.
- 15. Y. Jiang, Q. Wu and X. Chang, *Talanta*, 2014, **121**, 122-126.
- 16. V. S. Lin, A. R. Lippert and C. J. Chang, *Proc. Natl. Acad. Sci. U.S.A.*, 2013, **110**, 7131-7135.
- B. Peng, W. Chen, C. Liu, E. W. Rosser, A. Pacheco, Y. Zhao, H. C. Aguilar and M. Xian, *Chem. Eur. J.*, 2013, **20**, 1010-1016.
- 18. X. Cao, W. Lin, K. Zheng and L. He, *Chem. Commun.*, 2012, 48, 10529–10531.
- 19. W. Xuan, R. Pan, Y. Cao, K. Liu and W. Wang, *Chem. Commun.*, 2012, **48**, 10669–10671.
- 20. R. Wang, F. Yu, L. Chen, H. Chen, L. Wang and W. Zhang, *Chem. Commun.*, 2012, **48**, 11757–11759.
- 21. M.-Y. Wu, K. Li, J.-T. Hou, Z. Huang and X.-Q. Yu, *Org. Biomol. Chem.*, 2012, **10**, 8342-8347.
- 22. L. Zhang, W. G. Meng, L. Lu, Y. S. Xue, C. Li, F. Zou, Y. Liu and J. Zhao, *Sci. Rep.*, 2014, **29**, 5870.
- 23. L. A. Montoya and M. D. Pluth, Chem. Commun., 2012, 48, 4767–4769.
- 24. S. K. Das, C. S. Lim, S. Y. Yang, J. H. Han and B. R. Cho, *Chem. Commun.*, 2012, **48**, 8395–8397.
- 25. K. Zheng, W. Lin and L. Tan, Org. Biomol. Chem., 2012, 10, 9683–9688.
- 26. W. Sun, J. Fan, C. Hu, J. Cao, H. Zhang, X. Xiong, J. Wang, S. Cui, S. Sun and X. Peng, *Chem. Commun.*, 2013, **49**, 3890-3892.
- 27. J. Zhang and W. Guo, Chem. Commun., 2014, 50, 4214-4217.
- 28. T. Saha, D. Kand and P. Talukdar, Org. Biomol. Chem., 2013, 11, 8166–8170.
- 29. Y. Liu and G. Feng, Org. Biomol. Chem., 2014, 12, 438–445.

- 30. Y. Cai, L. Li, Z. Wang, J. Z. Sun, A. Qin and B. Z. Tang, *Chem. Commun.*, 2014, **50**, 8892-8895.
- 31. Z. Wu, Z. Li, L. Yang, J. Han and S. Han, Chem. Commun., 2012, 48, 10120–10122.
- 32. Q. Qiao, M. Zhao, H. Lang, D. Mao, J. Cui and Z. Xu, RSC Adv., 2014, 4, 25790-25794.
- 33. A. R. Lippert, E. J. New and C. J. Chang, J. Am. Chem. Soc., 2011, 133, 10078–10080.
- 34. S. Chen, Z.-j. Chen, W. Ren and H.-w. Ai, J. Am. Chem. Soc., 2012, 134, 9589–9592.
- 35. T. S. Bailey and M. D. Pluth, J. Am. Chem. Soc., 2013, 135, 16697–16704.
- 36. H. Peng, Y. Cheng, C. Dai, A. L. King, B. L. Predmore, D. J. Leferand and B. Wang, *Angew. Chem. Int. Ed.*, 2011, **50**, 9672–9675.
- 37. C. A. Parker and W. T. Rees, *Analyst*, 1960, **85**, 587-600.