General Rules of Fragmentation Evidencing Lasso Structures in CID and ETD

K. Jeanne Dit Fouque,^{a,b} H. Lavanant,^{*,a} S. Zirah,^c J. D. Hegemann,^{d,e} C. D. Fage,^{e,f} M. A. Marahiel,^e S. Rebuffat^c and C. Afonso^a

^a Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France.

^b Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States.

^c Muséum National d'Histoire Naturelle, Sorbonne Universités, Centre national de la Recherche scientifique, Laboratoire Molécules de Communication et Adaptation des Microorganismes, UMR 7245 CNRS-MNHN, CP 54, 57 rue Cuvier, 75005 Paris, France.

^d Roger Adams Laboratory, Department of Chemistry, University of Illinois at Urbana–Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States.

^e Department of Chemistry, Biochemistry; LOEWE Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein-Strasse 4, 35032, Marburg, Germany.

^f Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom.

Supporting Information

Table S1. Conditions for the production of lasso peptides.

Peptide	Medium	Conditions for production	Producing Strain	Ref
Anantin	GYM	30°C for 2 days	Streptomyces coerulescens	1
Astexin-1(19)	M9	37°C for 1 day	E. coli BL21 (DE3) transformed with pET41a construct	2
BI-32169	GYM	28°C for 5 days	Streptomyces sp.	3
Capistruin	M20	37°C for 2 days	Burkholderia thailandensis E264	4
Caulonodin I	M9	20°C for 3 days	E. coli BL21 (DE3) transformed with pET41a construct	5
Caulonodin II	M9	20°C for 3 days	E. coli BL21 (DE3) transformed with pET41a construct	5
Caulonodin III	M9	20°C for 3 days	E. coli BL21 (DE3) transformed with pET41a construct	5
Caulosegnin I	M9	20°C for 3 days	E. coli BL21 (DE3) transformed with pET41a construct	6
Caulosegnin II	M9	20°C for 3 days	E. coli BL21 (DE3) transformed with pET41a construct	6
Caulosegnin III	M9	20°C for 3 days	E. coli BL21 (DE3) transformed with pET41a construct	6
MccJ25	M63	37°C for 1 day	E. coli MC4100 transformed with pTUC202	7
Propeptin	*	27°C for 9 days	Microbispora sp.	8
Rubrivinodin	M9	37°C for 1 day	E. coli BL21 (DE3) transformed with pET41a construct	5
Siamycin I	GYM	28°C for 4 days	Streptomyces sp.	9
Sphingonodin I	M9	20°C for 3 days	E. coli BL21 (DE3) transformed with pET41a construct	5
Sphingopyxin I	M9	20°C for 3 days	E. coli BL21 (DE3) transformed with pET41a construct	5
Sphingopyxin II	M9	20°C for 3 days	E. coli BL21 (DE3) transformed with pET41a construct	5
Sviceucin	GYM	28°C for 5 days	S. coelicolor transformed with the p4H7 cosmid	10
Syanodin I	M9	20°C for 3 days	E. coli BL21 (DE3) transformed with pET41a construct	5
Xanthomonin I	M9	20°C for 3 days	E. coli BL21 (DE3) transformed with pET41a construct	11
Xanthomonin II	M9	20°C for 3 days	E. coli BL21 (DE3) transformed with pET41a construct	11

* Medium composed of glucose 2%, soluble starch 1%, meat extract 0.1%, dried yeast 0.4%, soybean flour 2.5%, NaCl 0.2% and K₂HPO₄ 0.005%, (pH 6.7).

 Table S2. Data collection and refinement statistics for the lasso peptide rubrivinodin.

	Rubrivinodin			
Data collection				
Space group	P2 ₁			
X-ray source	BESSY, BL14.1			
Cell dimensions				
a, b, c (Å)	15.03, 27.24, 15.17			
α, β, γ (°)	90.00, 116.76, 90.00			
Monomers per AU	1			
Wavelength (Å)	0.7999			
Resolution (Å)	50.00-0.80 (0.85-0.80)*			
R _{merge}	0.019 (0.097)			
Average $I/\sigma(I)$	35.85 (6.76)			
<i>CC</i> _{1/2}	1.00 (0.971)			
No. unique reflections	9545 (536)			
Completeness (%)	81.8 (28.9)			
Redundancy	3.00 (1.71)			
Refinement				
Resolution (Å)	13.622-0.806 (0.827-0.806)			
No. unique reflections	9038 (175)			
R _{work} / R _{free}	0.0844/0.0913 (0.121/0.141)			
No. atoms (non-H) ⁺	154			
Protein	138			
Water	16			
Average <i>B</i> -factor (Å ²)				
Protein	3.77			
Water	8.96			
R.m.s deviations				
Bond lengths (Å)	0.014			
Bond angles (°)	2.147			
Ramachandran				
Favored (%)	100.0			
PDB code	50QZ			

Dataset was acquired from a single crystal.

 $\ensuremath{^*\text{Values}}$ in parentheses refer to the highest-resolution shell.

 $^{\dagger}\mbox{Includes}$ atoms from residues in alternate conformations.

Figure S1a. CID spectra of the $[M+3H]^{3+}$ species of a) anantin (m/z 623.3), b) astexin-1(19) (m/z 698.7), c) caulonodin III (m/z 597.3), d) caulosegnin II (m/z 661.0), and e) caulosegnin III (m/z 676.7). Typical lasso-specific interlocked species are highlighted in red and labeled on the peptide cartoons (right of each panel). The macrolactam rings, the loops, the plugs, the C-terminal tails and the proposed plugs are highlighted in green, blue, red, orange and purple, respectively.

Figure S1b. CID spectra of the $[M+3H]^{3+}$ species of f) MccJ25 (*m/z* 703.0), and g) sphingonodin I (*m/z* 514.9). Typical lasso-specific interlocked species are highlighted in red and labeled on the peptide cartoons (right of each panel). The macrolactam rings, the loops, the plugs, the C-terminal tails and the proposed plugs are highlighted in green, blue, red, orange and purple, respectively.

Figure S2a. CID spectra of the $[M+3H]^{3+}$ species of a) capistruin (*m*/*z* 683.7), and b) caulonodin I (*m*/*z* 554.3). Typical product ions are labeled on the peptide cartoons (right of each panel). The macrolactam rings, the loops, the plugs, the C-terminal tails and the proposed plugs are highlighted in green, blue, red, orange and purple, respectively.

Figure S2b. CID spectra of the $[M+3H]^{3+}$ species of c) caulonodin II (*m*/*z* 560.0), d) rubrivinodin (*m*/*z* 632.0), e) sphingopyxin I (*m*/*z* 728.0), f) sphingopyxin II (*m*/*z* 648.3), and g) syanodin I (*m*/*z* 470.6). Typical product ions are labeled on the peptide cartoons (right of each panel). The macrolactam rings, the loops, the plugs, the C-terminal tails and the proposed plugs are highlighted in green, blue, red, orange and purple, respectively.

Figure S2c. CID spectra of h) the $[M+3H]^{3+}$ species of xanthomonin I (m/z 484.9), and i) the $[M+2H]^{2+}$ species of xanthomonin II (m/z 636.3). Typical product ions are labeled on the peptide cartoons (right of each panel). The macrolactam rings, the loops, the plugs and the C-terminal tails are highlighted in green, blue, red and orange, respectively.

Figure S3. CID spectra of the $[M+3H]^{3+}$ species of a) BI-32169 (m/z 679.6), and b) siamycin I (m/z 721.6). Typical crosslinked product ions are labeled on the peptide cartoons (right of each panel). The macrolactam rings, the loops, the plugs, the C-terminal tails and the disulfide bonds are highlighted in green, blue, red, orange and black, respectively.

Figure S4a. ETD spectra of the $[M+3H]^{3+}$ species of a) anantin (*m/z* 624.3), b) astexin-1(19) (*m/z* 698.7), c) capistruin (*m/z* 683.7), d) caulonodin I (*m/z* 554.3) and e) caulonodin II (*m/z* 560.0). Typical hydrogen migration product ions are highlighted in red and labeled on the peptide cartoons (right of each panel). The macrolactam rings, the loops, the plugs, the C-terminal tails and the proposed plugs are highlighted in green, blue, red, orange and purple, respectively.

Figure S4b. ETD spectra of the $[M+3H]^{3+}$ species of f) caulonodin III (m/z 597.3), g) caulosegnin I (m/z 641.0), h) caulosegnin II (m/z 661.0), i) caulosegnin III (m/z 676.7) and j) MccJ25 (m/z 703.0). Typical hydrogen migration product ions are highlighted in red and labeled on the peptide cartoons (right of each panel). The macrolactam rings, the loops, the plugs, the C-terminal tails and the proposed plugs are highlighted in green, blue, red, orange and purple, respectively.

Figure S4c. ETD spectra of the $[M+3H]^{3+}$ species of k) rubrivinodin (m/z 632.0), l) sphingonodin I (m/z 514.1), m) sphingopyxin I (m/z 728.0), n) sphingopyxin II (m/z 648.3) and o) syanodin I (m/z 470.6). Typical hydrogen migration product ions are highlighted in red and labeled on the peptide cartoons (right of each panel). The macrolactam rings, the loops, the plugs, the C-terminal tails and the proposed plugs are highlighted in green, blue, red, orange and purple, respectively.

Figure S4d. ETD spectra of the $[M+3H]^{3+}$ species of p) xanthomonin I (m/z 484.9) and of the $[M+2H]^{2+}$ species of q) xanthomonin II (m/z 636.3). Typical hydrogen migration product ions are highlighted in red and labeled on the peptide cartoons (right of each panel). The macrolactam rings, the loops, the plugs, the C-terminal tails and the proposed plugs are highlighted in green, blue, red, orange and purple, respectively.

Figure S5. ETD spectra of the $[M+3H]^{3+}$ species of a) BI-32169 (m/z 679.6), and b) siamycin I (m/z 721.6). Typical hydrogen migration product ions are highlighted in red and labeled on the peptide cartoons (right of each panel). The macrolactam rings, the loops, the plugs, the C-terminal tails and the disulfide bonds are highlighted in green, blue, red, orange and black, respectively.

REFERENCES

- 1. W. Weber, W. Fischli, E. Hochuli, E. Kupfer and E. K. Weibel, J. Antibiot., 1991, 44, 164-171.
- 2. M. Zimmermann, J. D. Hegemann, X. Xie and M. A. Marahiel, *Chem. Biol.*, 2013, **20**, 558-569.
- 3. T. A. Knappe, U. Linne, X. Xie and M. A. Marahiel, *FEBS Lett.*, 2010, **584**, 785-789.
- 4. T. A. Knappe, U. Linne, S. Zirah, S. Rebuffat, X. Xie and M. A. Marahiel, *J. Am. Chem. Soc.*, 2008, **130**, 11446-11454.
- 5. J. D. Hegemann, M. Zimmermann, S. Zhu, D. Klug and M. A. Marahiel, *Biopolymers*, 2013, **100**, 527-542.
- 6. J. D. Hegemann, M. Zimmermann, X. Xie and M. A. Marahiel, *J. Am. Chem. Soc.*, 2013, **135**, 210-222.
- 7. R. A. Salomon and R. N. Farias, *J. Bacteriol.*, 1992, **174**, 7428-7435.
- 8. K.-I. Kimura, F. Kanou, H. Takahashi, Y. Esumi, M. Uramoto and M. Yoshihama, *J. Antibiot.*, 1997, **50**, 373-378.
- 9. M. Tsunakawa, S.-L. Hu, Y. Hoshino, D. J. Detlefson, S. E. Hill, T. Furumai, R. J. White, M. Nishio, K. Kawano, S. Yamamoto, Y. Fukagawa and T. Oki, *J. Antibiot.*, 1995, **48**, 433-434.
- 10. Y. Li, R. Ducasse, S. Zirah, A. Blond, C. Goulard, E. Lescop, C. Giraud, A. Hartke, E. Guittet, J. L. Pernodet and S. Rebuffat, *ACS Chem. Biol.*, 2015, **10**, 2641-2649.
- 11. J. D. Hegemann, M. Zimmermann, S. Zhu, H. Steuber, K. Harms, X. Xie and M. A. Marahiel, *Angew. Chem. Int. Ed. Engl.*, 2014, **53**, 2230-2234.