Table S1 Summary of boronic acid enrichment experimental conditions and results including the number of identified N-glycopeptides and the intensity ratio of glycopeptides versus nonglycopeptides.

		ASF		HRP		lg	G	RNB		
Experimenta	al conditions	Number of N- Glycopeptides	Relative Intensity (gly/nongly)							
Buffer composition	HCOONH ₄	11	31.29	16	208.39	3	420.07	5	34.61	
(pH 10, 50mM)	CH_3COONH_4	11	66.86	17	150.15	3	879.81	5	17.12	
	NH ₄ HCO ₃	12	72.00	17	236.08	3	516.65	5	20.20	
	10mM	9	33.82	14	113.53	3	158.07	5	42.93	
Buffer	20mM	9	42.04	16	118.50	3	207.78	5	29.30	
concentration	50mM	12	53.36	17	123.77	3	288.56	5	117.67	
(pH 10, NH ₄ HCO ₃)	100mM	10	55.35	8	82.89	3	309.79	5	921.41	
	200mM	0	31.53	1	98.70	0	63.05	5	773.65	
	7.00	5	33.74	7	52.44	3	163.77	0	3.26	
pH of Buffer (50mM NH.HCO.)	8.00	6	28.66	7	74.08	3	177.43	0	3.36	
	9.00	7	30.43	11	47.07	3	241.63	2	7.82	
(3,	10.00	12	47.30	17	77.34	3	189.80	5	124.45	
	11.00	8	35.70	14	81.59	3	139.80	5	151.45	

Table S2 Summary of ZIC-HILIC enrichment experimental conditions and the number of enriched glycopeptides. (Intensity represented the total intensity of three selected N-glycopeptides.)

				,	ASF			ŀ	IRP				gG			F	NB	
			Without Ad	dded Salt	With 20m	nM ABC	Without A	dded Salt	With 20m	M ABC	Without A	dded Salt	With 20m	M ABC	Without A	dded Salt	With 20n	nM ABC
			NO. of Glycopeptides	Intensity														
		0.50%	1	163.8	7	821.4	1	16.1	9	296.2	0	27.0	8	132.1	0	27.3	2	86.5
	FA Concentration	1%	2	97.2	7	742.4	1	16.3	9	271.4	1	28.1	8	135.4	0	33.2	4	183.7
Formic Acid	of Loading Buffer (80% ACN with	3%	4	331.9	7	363.0	1	20.5	8	68.7	2	579.1	10	203.1	2	48.7	5	143.4
System	concentrations of	5%	3	335.6	7	829.0	1	17.8	6	49.7	3	28.2	8	279.3	3	60.0	4	114.1
	solution)	8%	2	95.4	6	1081.4	3	89.5	4	165.9	1	30.3	8	300.4	2	30.1	3	59.5
		10%	1	31.3	6	793.5	1	9.5	1	46.7	0	25.0	7	173.2	0	27.5	2	32.9
		0.05%	6	4827.0	9	3840.4	2	268.4	16	1732.9	5	470.7	19	4394.9	1	640.2	5	1539.8
	TFA Concentration	0.10%	6	3647.3	14	3570.6	2	265.6	18	1532.4	6	353.3	21	3971.6	1	515.2	5	1904.2
Trifluoroacetic	(80% ACN with	0.50%	6	2736.1	1	289.8	2	285.4	3	483.3	8	742.9	1	351.8	2	453.9	2	391.6
System	concentrations of	1.00%	10	2956.8	1	273.3	6	296.5	3	239.4	10	312.9	0	288.5	5	1471.0	2	448.0
	solution)	3.00%	10	4906.8	1	389	9	2119.9	4	243.2	17	1414.7	0	250.9	5	1220.2	2	440.2
		5.00%	14	3059.8	3	579.2	14	2807.3	8	477.9	27	7853.8	13	1055.7	5	5843.4	3	422.9
		30%	0	213.8	0	259.4	0	227.1	0	273.0	0	322.5	0	333.8	0	393.2	0	383.0
		50%	0	207.3	0	271.2	0	223.5	0	276.0	0	209.0	1	306.3	0	335.3	0	329.9
ACN Concent B	ration of Loading uffer	60%	0	204.3	0	275.1	0	229.4	1	263.1	0	194.7	4	388.3	0	334.8	0	339.5
(TFA with differ of ACN in aq	ent concentrations ueous solution)	70%	2	345.5	2	410.9	3	225.5	11	473.2	0	233.6	4	486.7	o	400.4	5	861.2
		80%	14	2675.4	14	2701.2	14	865.6	17	1928.6	27	2294.7	19	3131.2	3	1835.3	5	4383.9
		90%	14	4531.9	14	2225.3	16	1868.3	17	1330.6	19	3621.0	13	1203.4	5	3669.2	5	912.2

Notes:Intensity represents the total intensity of three selected N-glycopeptides. The intensity values of the same series are comparable, and the intensity values of the different series are not comparable.

		Number of N-Glycopeptides								
		ASF		HRP		le	;G	RNB		
_		NO. of N-Glycopeptides	NO. of NonGlycopeptides							
ACN Concentration	10%	0	0	0	0	0	0	0	0	
of Washing	20%	0	1	1	2	0	1	5	0	
Buffer	30%	7	10	2	6	17	4	o	5	
(0.1% TFA with different	40%	7	11	13	4	7	4	0	5	
concentration of ACN in	50%	3	9	14	1	6	5	0	5	
aqueous solution)	80%	1	6	10	4	2	2	0	4	

Table S3 Summary of PGC different eluents and the number of enriched glycopeptides.

Table S4 Detailed information of the observed glycopeptides in ASF tryptic digest with boronic acid, ZIC-HILIC and PGC.

NO.	m/z	Glycan composition	Amino acid sequence	Boronic acid	ZIC-HILIC	PGC
A1	3018		VVHAVEVALATFNAESN#GSY LQLVEISR	Y	Y	
A2	3219	[HexNAc]	VVHAVEVALATFNAESN#GSY LQLVEISR		Y	
A3	3249	[Hex]5[HexNAc]4	LCPDCPLLAPLN#DSR	Y	Y	Y
A4	3377	[Hex]5[HexNAc]4	KLCPDCPLLAPLN#DSR		Y	Y
A5	3402	[Hex]5[HexNAc]4	NAESN#GSYLQLVEISR		Y	
A6	3452	[Hex]5[HexNAc]5	LCPDCPLLAPLN#DSR		Υ	Υ
A7	3580	[Hex]5[HexNAc]5	KLCPDCPLLAPLN#DSR	Y	Y	Y
A8	3605	[Hex]5[HexNAc]5	NAESN#GSYLQLVEISR	Y		Y
A9	3614	[Hex]6[HexNAc]5	LCPDCPLLAPLN#DSR	Y	Υ	Υ
A10	3742	[Hex]6[HexNAc]5	KLCPDCPLLAPLN#DSR	Y	Υ	Υ
A11	3767	[Hex]6[HexNAc]5	NAESN#GSYLQLVEISR	Y	Υ	Υ
A12	4016	[Hex]6[HexNAc]5	TFNAESN#GSYLQLVEISR	Y	Υ	Υ
A13	4639	[Hex]5[HexNAc]4	VVHAVEVALATFNAES#NGSY LQLVEISR	Y	Y	
A14	4842	[Hex]5[HexNAc]5	VVHAVEVALATFNAES#NGSY LQLVEISR	Y		
A15	5004	[Hex]6[HexNAc]5	VVHAVEVALATFNAESN#GSY LQLVEISR	Y	Y	
A16	5180	[Hex]5[HexNAc]4	RPTGEVYDIEIDTLETTCHV LDPTPLAN#CSVR		Y	Y
A17	5545	[Hex]6[HexNAc]5	RPTGEVYDIEIDTLETTCHV LDPTPLAN#CSVR	Y	Y	Y

Table S5 Detailed information of the observed glycopeptides in HRP tryptic digest with boronic acid, ZIC-HILIC-N and PGC.

NO.	m/z	Glycan composition	Amino acid sequence	Boronic acid	ZIC-HILIC	PGC
H1	1842	[Xyl][Hex]3[Fuc][HexNAc]2	NVGLN#R	Y	Y	Y
H2	2073	[Xyl][Hex]3[Fuc][HexNAc]2	PN#VSNIVR	Y		Y
НЗ	2276	[Xyl][Hex]2[Fuc][HexNAc]2	SILLDN#TTSFR			Y
H4	2321	[Hex]2[HexNAc]2	MGN#ITPLTGTQGQIR	Y		Y
Н5	2532	[Fuc][HexNAc]	SFAN#STQTFFNAFVEAMDR		Y	
H6	2591	[Xyl][Hex]3[Fuc][HexNAc]2	PTLN#TTYLQTLR	Y	Υ	Y
H7	2611	[Xyl][Hex]3[HexNAc]2	MGN#ITPLTGTQGQIR	Y	Y	Y
Н8	2850	[Fuc][HexNAc]	GLIQSDQELFSSPN#ATDTIPLVR			Y
Н9	3048	[Xyl][Hex]2[HexNAc]2	SFAN#STQTFFNAFVEAMDR	Y	Y	Y
H10	3087	[Xyl][Hex]3[Fuc][HexNAc]2	GLCPLNGN#LSALVDFDLR	Υ	Y	Y
H11	3206	[Xyl][Hex]3[HexNAc]2	SFAN#STQTFFNAFVEAMDR		Y	Y
H12	3222	[Hex]3[Fuc][HexNAc]2	SFAN#STQTFFNAFVEAMDR			Y
H13	3323	[Xyl][Hex]3[Fuc][HexNAc]2	QLTPTFYDNSCPN#VSNIVR	Y	Y	Y
H14	3353	[Xyl][Hex]3[Fuc][HexNAc]2	SFAN#STQTFFNAFVEAMDR	Y	Y	Y
H15	3369	[Xyl][Hex]3[Fuc][HexNAc]2	SFAN#STQTFFNAFVEAM*DR	Y	Y	Y
H16	3508	[Xyl][Hex]2[Fuc][HexNAc]2	GLIQSDQELFSSPN#ATDTIPLVR			Y
H17	3525	[Xyl][Hex]3[HexNAc]2	GLIQSDQELFSSPN#ATDTIPLVR			Y
H18	3539	[Hex]3[Fuc][HexNAc]2	GLIQSDQELFSSPN#ATDTIPLVR			Y
H19	3606	[Xyl][Hex]3[Fuc][HexNAc]2	NQCRGLCPLNGN#LSALVDFDLR	Y	Y	Y
H20	3671	[Xyl][Hex]3[Fuc][HexNAc]2	GLIQSDQELFSSPN#ATDTIPLVR	Y	Y	Y
H21	3749	[Xyl][Hex]3[HexNAc]2	LHFHDCFVNGCDASILLDN#TTSFR		Y	Y
H22	3895	[Xyl][Hex]3[Fuc][HexNAc]2	LHFHDCFVNGCDASILLDN#TTSFR	Y	Y	Y
H23	4058	[Xyl][Hex]3[HexNAc]2	QLTPTFYDNSC(AAVESACPR)PN#VSNIVR-H2O		Υ	Y
H24	4223	[Xyl][Hex]3[Fuc][HexNAc]2	QLTPTFYDNSC(AAVESACPR)PN#VSNIVR	Y	Y	Y
LI25	4720	[Hex]3[Fuc][HexNAc]2		v	v	
1125	4720	[Hex]3[Fuc][HexNAc]2				
426	4007	[Xyl][Hex]3[Fuc][HexNAc]2		V	V	
H20	4657	[Xyl][Hex]3[HexNAc]2		1	ľ	
H27	4983	[Xyl][Hex]3[Fuc][HexNAc]2		v	v	v
Π27	4303	[Xyl][Hex]3[Fuc][HexNAc]2		T	т	T

Table S6 Detailed information of the observed glycopeptides in IgG tryptic digest with boronic acid, ZIC-HILIC-N and PGC.

NO.	m/z	Glycan composition	Amino acid sequence	Boronic acid	ZIC-HILIC	PGC
11	2210	[Hex]4[HexNAc]2	EEQFNSTFR	Y		Y
12	2226	[Hex]3[HexNAc]2[Fuc]1	EEQYNSTYR	Y		Υ
13	2252	[Hex]3[HexNAc]3	EEQFNSTFR			Υ
14	2242	[Hex]4[HexNAc]2	EEQYNSTYR	Y		Y
15	2397	[Hex]3[HexNAc]3[Fuc]1	EEQFNSTFR		Y	
16	2430	[Hex]3[HexNAc]3[Fuc]1	EEQYNSTYR		Y	Y
17	2455	[Hex]3[HexNAc]4	EEQFNSTFR		Y	
18	2487	[Hex]3[HexNAc]4	EEQYNSTYR		Y	Y
19	2560	[Hex]4[HexNAc]3[Fuc]1	EEQFNSTFR		Y	
110	2567	[Hex]6[HexNAc]2	EEQYNSTYR			Υ
111	2592	[Hex]4[HexNAc]3[Fuc]1	EEQYNSTYR		Υ	
112	2602	[Hex]3[HexNAc]4[Fuc]1	EEQFNSTFR		Υ	Υ
113	2608	[Hex]5[HexNAc]3	EEQFNSTFR		Υ	
114	2617	[Hex]4[HexNAc]4	EEQFNSTFR		Y	
115	2633	[Hex]3[HexNAc]4[Fuc]1	EEQYNSTYR		Υ	Υ
116	2754	[Hex]5[HexNAc]3[Fuc]1	EEQYNSTYR			Υ
117	2763	[Hex]4[HexNAc]4[Fuc]1	EEQFNSTFR		Υ	Υ
118	2779	[Hex]5[HexNAc]4	EEQFNSTFR		Y	
119	2795	[Hex]4[HexNAc]4[Fuc]1	EEQYNSTYR		Y	Υ
120	2804	[Hex]3[HexNAc]5[Fuc]1	EEQFNSTFR		Υ	Υ
121	2811	[Hex]5[HexNAc]4	EEQYNSTYR		Y	
122	2820	[Hex]4[HexNAc]5	EEQFNSTFR			Υ
123	2836	[Hex]3[HexNAc]5[Fuc]1	EEQYNSTYR		Υ	Υ
124	2883	[Hex]4[HexNAc]3[Fuc]1[NeuAc]1	EEQYNSTYR		Υ	
125	2926	[Hex]5[HexNAc]4[Fuc]1	EEQFNSTFR		Υ	Υ
126	2940	[Hex]4[HexNAc]4[NeuAc]1	EEQYNSTYR			Υ
127	2958	[Hex]5[HexNAc]4[Fuc]1	EEQYNSTYR		Y	Υ
128	2966	[Hex]4[HexNAc]5[Fuc]1	EEQFNSTFR		Y	Υ
129	2999	[Hex]4[HexNAc]5[Fuc]1	EEQYNSTYR		Y	Y
130	3086	[Hex]4[HexNAc]4[Fuc]1[NeuAc]1	EEQYNSTYR		Y	Υ
131	3128	[Hex]5[HexNAc]5[Fuc]1	EEQFNSTFR		Y	
132	3160	[Hex]5[HexNAc]5[Fuc]1	EEQYNSTYR		Υ	
133	3248	[Hex]5[HexNAc]4[NeuAc]1[Fuc]1	EEQYNSTYR		Υ	Υ
134	3257	[Hex]4[HexNAc]5[Fuc]1[NeuAc]1	EEQFNSTFR			Υ
135	3451	[Hex]5[HexNAc]5[NeuAc]1[Fuc]1	EEQYNSTYR		Y	
136	3613	[Hex]6[HexNAc]5[NeuAc]1[Fuc]1	EEQYNSTYR		Υ	
137	3726	[Hex]6[HexNAc]5[NeuAc]2	EEQFNSTFR			Y

Table S7 Detailed information of the observed glycopeptides in RNB digest with boronic acid, ZIC-HILIC-N and PGC.

NO.	m/z	Glycan composition	Amino acid sequence	Boronic acid	ZIC-HILIC	PGC
R1	1935	[Hex]5[HexNAc]2	SRN#LTK	Υ	Υ	Y
R2	2097	[Hex]6[HexNAc]2	SRN#LTK	Υ	Y	Y
R3	2259	[Hex]7[HexNAc]2	SRN#LTK	Υ	Υ	Y
R4	2421	[Hex]8[HexNAc]2	SRN#LTK	Υ	Y	Y
R5	2583	[Hex]9[HexNAc]2	SRN#LTK	Y	Y	Y

Fig. S1 The effects of buffer types and buffer concentration on boronic acid enrichment method. (A) The number of identified N-glycopeptides and the relative intensity when HCOONH₄, CH₃COONH₄ and NH₄HCO₃ were used as binding buffer. (B) The trend of spectrum total intensity when the binding buffer concentration was varied. (C) The number of identified N-glycopeptides and the relative intensity when changing the binding buffer concentration. (a) glycopeptides drived from ASF, (b) glycopeptides drived from HRP, (c) glycopeptides drived from IgG, (d) glycopeptides drived from RNB. (Relative intensity = sum of glycopeptides intensity / sum of nonglycopeptides intensity)

Fig. S2 MALDI-TOF-MS spectra of the ASF, HRP, IgG and RNB digests under the optimal experimental conditions: (a) glycopeptides drived from ASF, (b) glycopeptides drived from HRP, (c) glycopeptides drived from IgG, (d) glycopeptides drived from RNB. Glycopeptides peaks are marked with the red star.

Fig. S3 The effects of the ion-pairing reagent (TFA) using FA as acid control and the presence of salt in loading buffer on ZIC-HILIC enrichment method. The numbers of identified N-glycopeptides by

ZIC-HILIC with FA group and TFA Group were counted. The dark dot represented the solution without added salt, the light square represented the solution with 20mM NH₄HCO₃.

Fig. S4 The effect of different concentration ACN on ZIC-HILIC enrichment by using TFA solution. (A) without added salt group (B) the mass spectrums of HRP enriched by 0.1% TFA with 20mM ABC in 80% ACN solution and 90% ACN solution (C) with 20 mM ABC group.

Fig. S5 MALDI-TOF-MS spectrums of loading buffer after loaded three times. (A) ASF, (B) HRP, (C) IgG, (D) RNB.

Fig. S6 MALDI-TOF-MS spectrums obtained by using PGC to separate tryptic products from four standard proteins. The content of ACN in the eluent was varied to obtain the MS spectrums. (A) glycopeptides drived from ASF, (B) glycopeptides drived from HRP, (C) glycopeptides drived from IgG, (D) glycopeptides drived from RNB. (' \star ' indicated the N-glycopeptides.)

Fig. S7 Three technical replicates of boronic acid, ZIC-HILIC-N and ZIC-HILIC-S.

Fig. S8 Intact N-glycopeptides enrichment methods comparison with glycopeptides identified in more than 2 of the 3 replicates in each method. (A) Venn diagram of intact N-glycopeptides, N-glycoproteins, N-glycosites and glycans enriched with different methods were shown. (B) The proportion of different glycan types in intact glycopeptides identified by Boronic acid, ZIC-HILIC-N

and ZIC-HILIC-S. (C) The distributions of the peptides length (Lp), the length of glycans, the mass ratio of glycans versus peptides and the pl distribution of peptides enriched with Boronic acid, ZIC-HILIC-N and ZIC-HILIC-S.

Fig. S9 The distributions of the peptides length (Lp), the length of glycans, the mass ratio of glycans versus peptides and the pl distribution of unique glycopeptides identified by ZIC-HILIC-N and ZIC-HILIC-S, respectively.