Supporting Information

An ultrasensitive microchip electrophoresis assay based on separation assisted double cycling signal amplification strategy for microRNA quantification in cell lysate

Kaiji Wei,^a Jingjin Zhao,^{*,a} Xiaoshu Luo,^b Senghui Qiu,^b Fuyun He,^b Shuting Li^a and Shulin Zhao^{*a}

^aState Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, China

^bCollege of Electronic Engineering, Guangxi Normal University, Guilin, 541004, China

E-mail: zhaoshulin001@163.com; jzhao12@163.com.

Figure S1. The MCE-LIF detection system developed by our laboratory.

Figure S2. Dimensions and layout of the glass microchip. S: sample reservoir; B: buffer reservoir; SW: sample waste reservoir; BW: buffer waste reservoir; R: the oxidizer reagent reservoir.

Figure S3. Influence of application voltage on the separation. The electrophoresis buffer is 30 mM borate solution at pH 9.2 with 30 mM SDS.

Figure S4. Influence of electrophoresis buffer concentration on the separation. The electrophoresis buffer comprises of borate solution of different concentrations at pH 9.2 and 30 mM SDS.

Figure S5. Influence of electrophoresis buffer pH on the separation. The electrophoresis buffer comprise of 30 mM borate and 30 mM SDS.

Figure S6. Influence of SDS concentration on the separation. The electrophoresis buffer contained 30 mM borate solution at pH 9.2, with different concentrations of SDS.

Figure S7. Influence of incubation time on the fluorescence intensity. $C_{P1/P2}=2.0\times10^{-9}$ M; $C_{miRNA}=2.0\times10^{-11}$ M and $C_{MB}=5.0\times10^{-9}$ M. The amount of T7 Exo is 25 U.

Name	Sequences (5'to 3') description
miRNA-141	UAACACUGUCUGGUAAAGAUGG
P1	CCATCTTTACC <u>AGACAGTG</u> AGGGTTAAAA
P2	CCCGCT <u>AACCCTCACTGTCT</u> AAAA
MB	FAM-TTAGA <u>CAGTGAGG</u> GTTAGGTTA <u>CCTCACTG</u>
miR-141-1a	UAACACUGUCUGGUAAAGAUGA
miR-141-1b	UAACACUGUCUGGUACAGAUGG
miR-141-1c	UAACACUGUCAGGUAAAGAUGG
miR-141-2a	UAACACUGUAUGGCAAAGAUGG
miR-141-2b	UAACACGGUCUGGUACAGAUGG

Table S1. DNA/RNA fragment sequences used in this work*

* The italicized sequences of miRNA-141 and P1 are completely complementary. The underlined sequences of P1 and P2 are complementary and hybridizable, and the red sequence of P2 is complementary and hybridizable with MB. The underlined sequence in MB is its stem.

Methods	Detection limit	Dynamic range	References
T 7 exonuclease-assisted cyclic enzymatic	12 fM	25 fM-1 pM	1
amplification method coupled with rolling			
circle amplification			
WS ₂ nanosheet mediated fluorescence	300 fM	1 pM-10 nM	2
quenching and duplex-specific nuclease			
signal amplification			
Hairpin probe-based circular exponential	380 fM	1 pM -10 nM	3
amplification assay			
Non-enzymatic target recycling	80 fM	0.1 pM-10 nM	4
amplification			
Target-primed and branched rolling-circle	10 fM	25 fM -2.5 pM	5
amplification			
Target induced adenosine2-coralyne-	0.53 nM	0 -100 nM	6
adenosine ₂ formation			
Target-fueled DNA walker	58 fM	100 fM-1 nM	7
MCE assay based on separation assisted	8 fM	20 fM-20 pM	This work
double cycling signal amplification strategy			

Table S2. Comparison of different methods for miRNA detection

Reference

- L. Cui, Z. Zhu, N. Lin, H. Zhang, Z. Guan and C. J. Yang, *Chem. Commun.*, 2014, 50, 1576–1578.
- 2 Q. Xi, D. M. Zhou, Y. Y. Kan, J. Ge, Z. K. Wu, R. Q. Yu and J. H. Jiang, *Anal. Chem.*, 2014, **86**, 1361–1365.
- 3 G. L. Wang and C. Y. Zhang, *Anal. Chem.*, 2012, **84**, 7037–7042.
- 4 X. Li, D. Li, W. Zhou, Y. Chai, R. Yuan and Y. Xiang, *Chem. Commun.*, 2015, 51, 11084–11087.
- 5 Y. Cheng, X. Zhang, Z. Li, X. Jiao, Y. Wang, and Y. Zhang, *Angew. Chem.*, 2009, 121, 3318–3322.
- 6 J. J. Li, Q. Xi, W. F. Du, R. Q. Yu and J. H. Jiang, Analyst, 2016, 141, 2384–2387.
- 7 L. Wang, R. Deng and J. Li, Chem. Sci., 2015, 6, 6777-6782.