**Supporting information for:** 

# Improved mass spectrometric detection of acidic peptides by variations in the functional group pKa values of reverse micelle extraction agents

Bo Zhao<sup>1</sup>, Mahalia A. C. Serrano<sup>1</sup>, Meizhe Wang<sup>1</sup>, Tianying Liu<sup>1</sup>, Mallory R. Gordon<sup>1</sup>,

S. Thayumanavan<sup>1,2,3</sup>\* and Richard W. Vachet<sup>1,2,3</sup>\*

<sup>1</sup>Department of Chemistry, <sup>2</sup>Molecular and Cellular Biology Program, <sup>3</sup>Center for Bioactive Delivery – Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA

\*thai@chem.umass.edu, \*rwvachet@chem.umass.edu

Polymer synthesis and characterization

## Synthesis of random copolymer P1

Synthesis of compound P1 was mentioned elsewhere<sup>[1]</sup>

## Synthesis of random copolymer P2



Synthesis of polymers 2a:

Synthesis of compound **2a** was mentioned elsewhere<sup>[1]</sup>

Synthesis of polymers 2b:

A mixture of the compound **2a** (200 mg, 0.77 mmol), commercial available compound 4-Vinylbenzyl chloride (117 mg, 0.77 mmol) and *N-tert*-Butyl-*N*-(2-methyl-1-phenylpropyl)-*O*-(1-phenylethyl)hydroxylamine (NMP initiator, 10 mg, 0.031 mmol) were degassed by three freeze/thaw cycles, sealed under argon, and heated at 125 °C under argon for 12 h. After the reaction cool down to room temperature, the reaction mixture was dissolved in DCM, and dialyzed against DCM/MeOH (v/v= 6/1) for 2 days. The solution was collected and dried under vacuum to yield 220 mg (70% yield) of **2b**. GPC (PMMA/THF):  $M_n$ = 12K Da, D=1.2;



#### Synthesis of polymers 2c:

Polymer precursor **2b** was added to 2mL of Triethylphosphite in a round bottom flask and stirred with reflux at 110 °C for 24 h. The reaction mixture was then cooled to room temperature and dialyzed against DCM/MeOH (v/v= 6/1) for 2 days to remove excess Triethylphosphite. The solution was collected and dried under vacuum to yield 235 mg (85% yield) of **2c**. <sup>1</sup>H NMR indicates that there is a quantitative conversion from benzyl chloride to benzyl phosphonate functional group (based on the chemical shift of peak "g" and the emerging peaks "h" and "i").



#### Synthesis of polymers P2:

Polymer **2c** was dissolved in 3 mL of DCM in a round bottom flask and stirred in an ice bath for 15 min. Bromotrimethylsilane (0.17 mL, 1.54 mmol) was slowly added to the solution. The reaction mixture was further stirred for 12 h. After the reaction, the solvent and excess Bromotrimethylsilane was evaporated to obtain dark yellow solids. 3 mL DCM was added to re-dissolve the compounds and 1M HCl aqueous solution (1 mL) was added. The reaction mixture was stirred at room temperature for 1 hour. After the reaction, DCM was evaporated and water was removed, and the residues are lyophilized to obtain 220 mg of the final polymer **P2**. The disappearance of peaks "h" and "i" in the precursor indicates that the ethyl groups were deprotected. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) was shown below.



## Synthesis of random co-polymer P3



#### Synthesis of compound 3a:

To a solution of THF mixed with 4-Hydroxybenzaldehyde (5.16 g, 42.22 mmol) and Imidazole (4.02 g, 59.11 mmol), tert-Butyldimethylsilyl chloride (8.91 g, 59.11 mmol) was added and stirred for 12 hours at room temperature. After the reaction, NaCl saline and ethyl acetate were added for extraction. The combined organic layer was separated and washed with saline 3 times. The solvent was evaporated to dryness and purified by silica gel column chromatography (2-3% ethyl acetate in hexanes) to obtain 9.0 g (90% yield) of **3a**. <sup>1</sup>H NMR (400MHz, CDCl<sub>3</sub>)  $\delta$  9.89 (s, 1H),  $\delta$  7.77-7.79 (d, 2H),  $\delta$  6.93-6.94 (d, 2H),  $\delta$  0.98 (s, 9H),  $\delta$  0.24 (s, 6H). ESI-MS (expected: [m+H]<sup>+</sup>= 237.1, obtained: [m+Na]<sup>+</sup>= 259.1)

#### Synthesis of compound **3b**:

Methyltriphenylphosphonium bromide (12.41 g, 34.75 mmol) and Potassium tert-butoxide (3.90 g, 34.75 mmol) were mixed in a round bottom flask, and dry THF (20 mL) was added to the mixture. The mixture was stirred under argon atmosphere in an ice bath for 15 min to yield the bright yellow solution. **3a** (5.47 g, 23.17 mmol) was slowly added to the mixture. The reaction mixture was further stirred for 5 h. After the reaction, NaCl saline and ethyl acetate were added for extraction. The combined organic layer was separated and washed with saline 3 times. The organic layer was evaporated to dryness and purified by silica gel column chromatography (0.5% ethyl acetate in hexanes) to afford 4.6 g (85% yield) of **3b**. <sup>1</sup>H NMR (400MHz, CDCl<sub>3</sub>)  $\delta$  7.28-7.29 (d, 2H),  $\delta$  6.78-6.80 (d, 2H),  $\delta$  6.62-6.68 (q, 1H),  $\delta$  5.59-5.62 (d, 1H),  $\delta$  5.11-5.13 (d, 1H),  $\delta$  0.98 (s, 9H),  $\delta$  0.20 (s, 6H).

#### Synthesis of random co-polymer 3c:

A mixture of the compound **3b** (269 mg, 1.15 mmol), **2a** (300 mg, 1.15 mmol) and *N-tert*-Butyl-*N*-(2-methyl-1-phenylpropyl)-*O*-(1-phenylethyl)hydroxylamine (NMP initiator, 15 mg, 0.046 mmol) were degassed by three freeze/thaw cycles, sealed under argon, and heated at 125 °C under argon for 12 h. After the reaction cool down to room temperature, the reaction mixture was dissolved in minimal amount of DCM, and precipitated 3 times in the MeOH. The precipitate was collected and dried under vacuum to yield 430 mg (75% yield) of **3c**. GPC (PMMA/THF):  $M_n$ = 12K Da, D= 1.1. <sup>1</sup>H NMR (400MHz, CDCl<sub>3</sub>) was shown below.



#### Synthesis of random co-polymer 3d:

THF (3 mL) was added to dissolve the dried random co-polymer **3c**. Tetrabutylammonium fluoride (5.75 mL, 1M in THF) was added to the reaction in an ice bath, and stirred for 12 h. The reaction mixture was evaporated and re-dissolved with minimal amount of DCM. Then MeOH was used to precipitate polymers 3 times. The product was collected and dried under vacuum to yield 200 mg (50% yield) of **3d**. The disappreance of peaks "h" and "g" in the precursor indicates that the TBS was deprotected. <sup>1</sup>H NMR (400MHz, CDCl<sub>3</sub>) was shown below.



#### Synthesis of random co-polymer P3:

THF (5 mL) was added to dissolve the dried random co-polymer **3d**. Sodium hydride (0.13 g, 5.75 mmol) was added to the reaction in an ice bath, and stirred for 15 min. The reaction mixture was then added the 1,3-Propanesultone (0.70 g, 5.75 mmol) and stirred for 12 hours. After the reaction, 2 mL of H<sub>2</sub>O was added dropwise to the reaction to quench the NaH in the mixture in an ice bath. Then mixture was dried, and the water was removed. The dried sample was dialyzed against DCM/MeOH (v/v= 6/1) for 1 day. The solution was evaporated and dried under vacuum to obtain 130 mg of the final product **P3**. <sup>1</sup>H NMR (400MHz, CDCl<sub>3</sub>) was shown below.



## Extraction for the peptides mixture



**Figure S1.** (a) MALDI mass spectrum of aqueous phase (AQ) and organic phase (ORG) after extraction using reverse micelles of polymer **P2** at pH 2.1. (b) MALDI mass spectrum of aqueous phase (AQ) and organic phase (ORG) after extraction using reverse micelles of polymer **P3** at pH 2.1.



**Figure S2.** (a) MALDI mass spectrum of aqueous phase (AQ) and organic phase (ORG) after extraction using reverse micelles of polymer **P2** at pH 1.0. (b) MALDI mass spectrum of aqueous phase (AQ) and organic phase (ORG) after extraction using reverse micelles of polymer **P3** at pH 1.0.

### **Determination of extraction capacity**



Figure S3. Example of kinetensin (KIN) peptide extraction capacity measurement using reverse micelles of polymer P1 at pH 5.4. Signal-to-noise (S/N) is used as a measure of peptide signal to account for well-known spot-to-spot variations in the noise levels in MALDI-MS measurements. In addition, we used a S/N ratio of > 3 to confirm that a peptide ion was truly measured. Linear regression fitting was used to obtain the capacity.

#### Stability of reverse micelles



**Figure S4.** UV-Vis absorption measurements with reverse micelles starting in toluene (ORG), before and after equilibration (Eq) with an aqueous Tris buffer (AQ). (a) **P1** at pH 8.7. (b) **P2** at pH 8.7. (c) **P3** at pH 9.8.



**Figure S5.** The MALDI spectra of (a) the organic phase after the first extraction using 400  $\mu$ L of 2.0 × 10<sup>-5</sup> M of **P3** at pH 6. (b) the remaining aqueous phase after the first extraction using **P3** at pH 6. (The number above the peaks correspond to the calculated peptide pI values.)

## Details of peptides in the MALDI spectra

| m/z     | Sequence     | Modification                       | Protein | pI   |
|---------|--------------|------------------------------------|---------|------|
| 927.89  | YLYEIAR      |                                    | BSA     | 6.0  |
| 1026.04 | WWCNDGR      | 1Carbamidomethyl<br>2Oxidation     | Lyz     | 5.8  |
| 1036.83 | CELAAAMKR    | 1Acetyl                            | Lyz     | 8.2  |
| 1045.98 | GTDVQAWIR    |                                    | Lyz     | 5.8  |
| 1051.83 | QNCDQFEK     | 1Carbamidomethyl<br>1Gln->pyro-Glu | BSA     | 4.4  |
| 1089.00 | GTDVQAWIR    | 1Acetyl                            | Lyz     | 5.8  |
| 1121.93 | CCTESLVNR    | 1Carbamidomethyl                   | BSA     | 6.0  |
|         |              | 1Pyro-<br>carbamidomethyl          |         |      |
| 1149.92 | CCTKPESER    | 1Carbamidomethyl                   | BSA     | 6.1  |
|         |              | 1Pyro-<br>carbamidomethyl          |         |      |
| 1164.11 | LVNELTEFAK   |                                    | BSA     | 4.5  |
| 1246.24 | IQRTPKIQVY   |                                    | b2m     | 10.0 |
| 1250.12 | FKDLGEEHFK   |                                    | BSA     | 5.5  |
| 1306.24 | HLVDEPQNLIK  |                                    | BSA     | 5.3  |
| 1360.16 | TEFTPTEKDEY  |                                    | b2m     | 4.0  |
| 1400.25 | TVMENFVAFVDK |                                    | BSA     | 4.4  |
| 1416.25 | TVMENFVAFVDK | 1Oxidation                         | BSA     | 4.4  |
| 1420.25 | SLHTLFGDELCK | 1Carbamidomethyl                   | BSA     | 5.3  |
| 1429.23 | FESNFNTQATNR |                                    | Lyz     | 6.0  |
| 1438.22 | ETYGDMADCCEK | 1Carbamidomethyl                   | BSA     | 3.9  |

Table S1. Detailed information of peptides in Figure 5a.

|         |                           | 1Oxidation       |     |           |
|---------|---------------------------|------------------|-----|-----------|
| 1440.38 | RHPEYAVSVLLR              |                  | BSA | 8.8       |
| 1472.25 | FESNFNTQATNR              | Acetyl           | Lyz | 6.0       |
| 1479.11 | ETYGDMADCCEK              | 1Carbamidomethyl | BSA | 3.9       |
|         |                           | 1Oxidation       |     |           |
| 1480.39 | LGEYGFONALIVR             |                  | BSA | 6.0       |
| 1486.26 | FESNFNTOATNR              | Carbamidomethyl  | Lvz | 6.0       |
| 1503.21 | EYEATLEECCAK              | 2Carbamidomethyl | BSA | 4.1       |
| 1523.29 | YTEFTPTEKDEY              |                  | b2m | 4.0       |
| 1533.37 | LKECCDKPLLEK              | 2Carbamidomethyl | BSA | 6.2       |
| 1538.40 | LCVLHEKTPVSEK             | 1Carbamidomethyl | BSA | 6.8       |
| 1555.27 | DDPHACYSTVFDK             | 1Carbamidomethyl | BSA | 4.4       |
| 1568.36 | DAFLGSFLYEYSR             |                  | BSA | 4.4       |
| 1579.34 | ECCHGDLLECADDR            |                  | BSA | 4.1       |
| 1629.44 | YICDNODTISSKLK            |                  | BSA | 6.0       |
| 1640.59 | KVPOVSTPTLVEVSR           |                  | BSA | 8.8       |
| 1661.44 | NRCKGTDVOAWIR             | 1Carbamidomethvl | Lvz | 9.5       |
|         |                           | 1Oxidation       | 5   |           |
| 1676.45 | IVSDGNGMNAWVAWR           |                  | Lvz | 5.8       |
| 1708.46 | IVSDGNGMNAWVAWR           | 2Oxidation       | Lyz | 5.8       |
| 1725.50 | MPCTEDYLSLILNR            | 1Carbamidomethyl | BSA | 4.4       |
| 1731.35 | ECCHGDLLECADDR            | 3Carbamidomethyl | BSA | 4.1       |
|         |                           | 1Glu->pyro-Glu   |     |           |
| 1741.49 | MPCTEDYLSLILNR            | 1Carbamidomethyl | BSA | 4.4       |
|         |                           | 1Oxidation       |     |           |
| 1748.38 | YNGVFQECCQAEDK            | 2Carbamidomethyl | BSA | 4.1       |
| 1754.52 | NTDGSTDYGILQINSR          |                  | Lyz | 4.2       |
| 1797.53 | CCAADDKEACFAVEGPK         | 1Pyro-           | BSA | 4.3       |
|         |                           | carbamidomethyl  |     |           |
| 1881.65 | RPCFSALTPDETYVPK          | 1Carbamidomethyl | BSA | 6.1       |
| 1902.62 | NECFLSHKDDSPDLPK          | 1Carbamidomethyl | BSA | 4.7       |
| 1908.66 | LFTFHADICTLPDTEK          | 1Carbamidomethyl | BSA | 4.5       |
| 1911.52 | CCAADDKEACFAVEGPK         | 2Carbamidomethyl | BSA | 4.3       |
|         |                           | 1Pyro-           |     |           |
|         |                           | carbamidomethyl  |     |           |
| 2020.74 | ETYGDMADCCEKQEPER /       | 1Oxidation /     | BSA | 4.1 / 4.4 |
|         | LKPDPNTLCDEFKADEK /       | 1Carbamidomethyl |     | / 4.3     |
|         | VASLRETYGDMADCCEK         | /                |     |           |
|         |                           | 2Carbamidomethyl |     |           |
|         |                           | 1Oxidation       |     |           |
| 2045.82 | RHPYFYAPELLYYANK          |                  | BSA | 8.4       |
| 2248.79 | ECCHGDLLECADDRADLAK       | 3Carbamidomethyl | BSA | 4.2       |
| 2471.01 | RPCFSALTPDETYVPKAFDEK     | 1Carbamidomethyl | BSA | 4.8       |
| 2488.04 | YNGVFQECCQAEDKGACLLPK     | 3Carbamidomethyl | BSA | 4.7       |
| 2525.10 | QEPERNECFLSHKDDSPDLPK     | 1Carbamidomethyl | BSA | 4.6       |
|         |                           | 1Gln->pyro-Glu   |     |           |
| 2542.13 | QEPERNECFLSHKDDSPDLPK     | 1Carbamidomethyl | BSA | 4.6       |
| 2613.15 | VHKECCHGDLLECADDRADLAK    | 3Carbamidomethyl | BSA | 4.9       |
| 3039.38 | EYEATLEECCAKDDPHACYSTVFDK | 3Carbamidomethyl | BSA | 4.2       |

| m/z     | Sequence               | Modification     | Protein | pI        |
|---------|------------------------|------------------|---------|-----------|
| 927.89  | YLYEIAR                |                  | BSA     | 6.0       |
| 993.81  | WWCNDGR                | 1Carbamidomethyl | Lyz     | 5.8       |
| 1246.24 | IQRTPKIQVY             |                  | b2m     | 10.0      |
| 1365.18 | ETYGDMADCCEK           |                  | BSA     | 3.9       |
| 1429.23 | FESNFNTQATNR           |                  | Lyz     | 6.0       |
| 1472.25 | FESNFNTQATNR           | Acetyl           | Lyz     | 6.0       |
| 1479.11 | ETYGDMADCCEK           | 1Carbamidomethyl | BSA     | 3.9       |
|         |                        | 1Oxidation       |         |           |
| 1503.21 | EYEATLEECCAK           | 2Carbamidomethyl | BSA     | 4.1       |
| 1523.29 | YTEFTPTEKDEY           |                  | b2m     | 4.0       |
| 1533.37 | LKECCDKPLLEK           | 2Carbamidomethyl | BSA     | 6.2       |
| 1629.44 | YICDNQDTISSKLK         |                  | BSA     | 6.0       |
| 1640.59 | KVPQVSTPTLVEVSR        |                  | BSA     | 8.8       |
| 1657.39 | QEPERNECFLSHK          | 1Carbamidomethyl | BSA     | 5.5       |
|         |                        | 1Gln->pyro-Glu   |         |           |
| 1676.45 | IVSDGNGMNAWVAWR        |                  | Lyz     | 5.8       |
| 1731.35 | ECCHGDLLECADDR         | 3Carbamidomethyl | BSA     | 4.1       |
|         |                        | 1Glu->pyro-Glu   |         |           |
| 1748.38 | YNGVFQECCQAEDK         | 2Carbamidomethyl | BSA     | 4.1       |
| 1751.63 | LSQKFPKAEFVEVTK        |                  | BSA     | 8.5       |
| 1754.52 | NTDGSTDYGILQINSR       |                  | Lyz     | 4.2       |
| 1797.53 | CCAADDKEACFAVEGPK      | 1Pyro-           | BSA     | 4.3       |
|         |                        | carbamidomethyl  |         |           |
| 1881.65 | RPCFSALTPDETYVPK       | 1Carbamidomethyl | BSA     | 6.1       |
| 1902.62 | NECFLSHKDDSPDLPK       | 1Carbamidomethyl | BSA     | 4.7       |
| 1911.52 | CCAADDKEACFAVEGPK      | 2Carbamidomethyl | BSA     | 4.3       |
|         |                        | 1Pyro-           |         |           |
|         |                        | carbamidomethyl  |         |           |
| 1928.54 | CCAADDKEACFAVEGPK      | 3Carbamidomethyl | BSA     | 4.3       |
| 2020.74 | ETYGDMADCCEKQEPER /    | 1Oxidation /     | BSA     | 4.1 / 4.4 |
|         | LKPDPNTLCDEFKADEK /    | 1Carbamidomethyl |         | / 4.3     |
|         | VASLRETYGDMADCCEK      | /                |         |           |
|         |                        | 2Carbamidomethyl |         |           |
|         |                        | 1Oxidation       |         |           |
| 2045.82 | RHPYFYAPELLYYANK       |                  | BSA     | 8.4       |
| 2114.70 | VHKECCHGDLLECADDR      | 3Carbamidomethyl | BSA     | 4.8       |
| 2118.66 | ETYGDMADCCEKQEPER      | 2Carbamidomethyl | BSA     | 4.1       |
| 2248.79 | ECCHGDLLECADDRADLAK    | 3Carbamidomethyl | BSA     | 4.2       |
| 2525.10 | QEPERNECFLSHKDDSPDLPK  | 1Carbamidomethyl | BSA     | 4.6       |
|         |                        | 1Gln->pyro-Glu   |         |           |
| 2542.13 | QEPERNECFLSHKDDSPDLPK  | 1Carbamidomethyl | BSA     | 4.6       |
| 2613.15 | VHKECCHGDLLECADDRADLAK | 3Carbamidomethyl | BSA     | 4.9       |

**Table S2.** Detailed information of peptides in Figure 5b.

| m/z     | Sequence              | Modification     | Protein | pI        |
|---------|-----------------------|------------------|---------|-----------|
| 927.89  | YLYEIAR               |                  | BSA     | 6.0       |
| 993.81  | WWCNDGR               | 1Carbamidomethyl | Lyz     | 5.8       |
| 1026.04 | WWCNDGR               | 1Carbamidomethyl | Lyz     | 5.8       |
|         |                       | 2Oxidation       |         |           |
| 1036.83 | CELAAAMKR             | 1Acetyl          | Lyz     | 8.2       |
| 1045.98 | GTDVQAWIR             |                  | Lyz     | 5.8       |
| 1051.83 | QNCDQFEK              | 1Carbamidomethyl | BSA     | 4.4       |
|         |                       | 1Gln->pyro-Glu   |         |           |
| 1246.24 | IQRTPKIQVY            |                  | b2m     | 10.0      |
| 1429.23 | FESNFNTQATNR          |                  | Lyz     | 6.0       |
| 1472.25 | FESNFNTQATNR          | Acetyl           | Lyz     | 6.0       |
| 1479.11 | ETYGDMADCCEK          | 1Carbamidomethyl | BSA     | 3.9       |
|         |                       | 1Oxidation       |         |           |
| 1503.21 | EYEATLEECCAK          | 2Carbamidomethyl | BSA     | 4.1       |
| 1523.29 | YTEFTPTEKDEY          |                  | b2m     | 4.0       |
| 1555.27 | DDPHACYSTVFDK         | 1Carbamidomethyl | BSA     | 4.4       |
| 1640.59 | KVPQVSTPTLVEVSR       |                  | BSA     | 8.8       |
| 1657.39 | QEPERNECFLSHK         | 1Carbamidomethyl | BSA     | 5.5       |
|         |                       | 1Gln->pyro-Glu   |         |           |
| 1731.35 | ECCHGDLLECADDR        | 3Carbamidomethyl | BSA     | 4.1       |
|         |                       | 1Glu->pyro-Glu   |         |           |
| 1748.38 | YNGVFQECCQAEDK        | 2Carbamidomethyl | BSA     | 4.1       |
| 1754.52 | NTDGSTDYGILQINSR      |                  | Lyz     | 4.2       |
| 1797.53 | CCAADDKEACFAVEGPK     | 1Pyro-           | BSA     | 4.3       |
|         |                       | carbamidomethyl  |         |           |
| 1881.65 | RPCFSALTPDETYVPK      | 1Carbamidomethyl | BSA     | 6.1       |
| 1911.52 | CCAADDKEACFAVEGPK     | 2Carbamidomethyl | BSA     | 4.3       |
|         |                       | 1Pyro-           |         |           |
|         |                       | carbamidomethyl  |         |           |
| 1928.54 | CCAADDKEACFAVEGPK     | 3Carbamidomethyl | BSA     | 4.3       |
| 2020.74 | ETYGDMADCCEKQEPER /   | 1Oxidation /     | BSA     | 4.1 / 4.4 |
|         | LKPDPNTLCDEFKADEK /   | 1Carbamidomethyl |         | / 4.3     |
|         | VASLRETYGDMADCCEK     | /                |         |           |
|         |                       | 2Carbamidomethyl |         |           |
| 0110.65 |                       | IOxidation       | DCL     | 4.1       |
| 2118.66 | ETYGDMADCCEKQEPER     | 2Carbamidomethyl | BSA     | 4.1       |
| 2248.79 | ECCHGDLLECADDRADLAK   | 3Carbamidomethyl | BSA     | 4.2       |
| 2525.10 | QEPERNECFLSHKDDSPDLPK | 1Carbamidomethyl | BSA     | 4.6       |
|         |                       | 1Gln->pyro-Glu   |         |           |
| 2542.13 | QEPERNECFLSHKDDSPDLPK | 1Carbamidomethyl | BSA     | 4.6       |

**Table S3.** Detailed information of peptides in Figure 5c.

**Table S4.** Detailed information of peptides in Figure 5d.

| m/z    | Sequence | Modification     | Protein | pI  |
|--------|----------|------------------|---------|-----|
| 927.89 | YLYEIAR  |                  | BSA     | 6.0 |
| 993.81 | WWCNDGR  | 1Carbamidomethyl | Lyz     | 5.8 |

| 1365.18 | ETYGDMADCCEK          |                  | BSA | 3.9 |
|---------|-----------------------|------------------|-----|-----|
| 1429.23 | FESNFNTQATNR          |                  | Lyz | 6.0 |
| 1479.11 | ETYGDMADCCEK          | 2Carbamidomethyl | BSA | 3.9 |
| 1503.21 | EYEATLEECCAK          | 2Carbamidomethyl | BSA | 4.1 |
| 1555.27 | DDPHACYSTVFDK         | 1Carbamidomethyl | BSA | 4.4 |
| 1731.35 | ECCHGDLLECADDR        | 3Carbamidomethyl | BSA | 4.1 |
|         |                       | 1Glu->pyro-Glu   |     |     |
| 1748.38 | YNGVFQECCQAEDK        | 2Carbamidomethyl | BSA | 4.1 |
| 1750.38 | ECCHGDLLECADDR        | 3Carbamidomethyl | BSA | 4.1 |
| 1754.52 | NTDGSTDYGILQINSR      |                  | Lyz | 4.2 |
| 1911.52 | CCAADDKEACFAVEGPK     | 2Carbamidomethyl | BSA | 4.3 |
|         |                       | 1Pyro-           |     |     |
|         |                       | carbamidomethyl  |     |     |
| 1928.54 | CCAADDKEACFAVEGPK     | 3Carbamidomethyl | BSA | 4.3 |
| 2117.78 | ETYGDMADCCEKQEPER     | 2Carbamidomethyl | BSA | 4.1 |
| 2248.79 | ECCHGDLLECADDRADLAK   | 3Carbamidomethyl | BSA | 4.2 |
| 2525.10 | QEPERNECFLSHKDDSPDLPK | 1Carbamidomethyl | BSA | 4.6 |
|         |                       | 1Gln->pyro-Glu   |     |     |

Table S5. Detailed information of peptides in Figure S5a.

| m/z     | Sequence         | Modification     | Protein | pI   |
|---------|------------------|------------------|---------|------|
| 1026.04 | WWCNDGR          | 1Carbamidomethyl | Lyz     | 5.8  |
|         |                  | 2Oxidation       | -       |      |
| 1246.24 | IQRTPKIQVY       |                  | b2m     | 10.0 |
| 1344.19 | SRHPAENGKSNF     |                  | b2m     | 8.5  |
| 1440.38 | RHPEYAVSVLLR     |                  | BSA     | 8.8  |
| 1480.39 | LGEYGFQNALIVR    |                  | BSA     | 6.0  |
| 1568.36 | DAFLGSFLYEYSR    |                  | BSA     | 4.4  |
| 1640.59 | KVPQVSTPTLVEVSR  |                  | BSA     | 8.8  |
| 1881.65 | RPCFSALTPDETYVPK | 1Carbamidomethyl | BSA     | 6.1  |
| 2045.82 | RHPYFYAPELLYYANK |                  | BSA     | 8.4  |

**Table S6.** Detailed information of peptides in Figure S5b. Peptides with asterisks are peptides that were not detected in the original digests mixtures.

| m/z     | Sequence  | Modification     | Protein | pI  |
|---------|-----------|------------------|---------|-----|
| 927.89  | YLYEIAR   |                  | BSA     | 6.0 |
| 1036.83 | CELAAAMKR | 1Acetyl          | Lyz     | 8.2 |
| 1045.98 | GTDVQAWIR |                  | Lyz     | 5.8 |
| 1051.83 | QNCDQFEK  | 1Carbamidomethyl | BSA     | 4.4 |
|         |           | 1Gln->pyro-Glu   |         |     |
| 1089.00 | GTDVQAWIR | 1Acetyl          | Lyz     | 5.8 |
| 1121.93 | CCTESLVNR | 1Carbamidomethyl | BSA     | 6.0 |
|         |           | 1Pyro-           |         |     |
|         |           | carbamidomethyl  |         |     |
| 1149.92 | CCTKPESER | 1Carbamidomethyl | BSA     | 6.1 |

|          |                       | 1Pyro-           |     |       |
|----------|-----------------------|------------------|-----|-------|
|          |                       | carbamidomethyl  |     |       |
| 1164.11  | LVNELTEFAK            |                  | BSA | 4.5   |
| 1250.12  | FKDLGEEHFK            |                  | BSA | 5.5   |
| 1306.24  | HLVDEPQNLIK           |                  | BSA | 5.3   |
| 1360.16  | TEFTPTEKDEY           |                  | b2m | 4.0   |
| 1400.25  | TVMENFVAFVDK          |                  | BSA | 4.4   |
| 1416.25  | TVMENFVAFVDK          | 1Oxidation       | BSA | 4.4   |
| 1429.23  | FESNFNTQATNR          |                  | Lyz | 6.0   |
| 1438.22  | ETYGDMADCCEK          | 1Carbamidomethyl | BSA | 3.9   |
|          |                       | 1Oxidation       |     |       |
| 1440.38  | RHPEYAVSVLLR          |                  | BSA | 8.8   |
| *1444.22 | YICDNQDTISSK          | 1Carbamidomethyl | BSA | 4.2   |
| *1464.18 | TCVADESHAGCEK         | 2Carbamidomethyl | BSA | 4.7   |
| 1472.25  | FESNFNTQATNR          | Acetyl           | Lyz | 6.0   |
| 1479.11  | ETYGDMADCCEK          | 1Carbamidomethyl | BSA | 3.9   |
|          |                       | 1Oxidation       |     |       |
| 1480.39  | LGEYGFQNALIVR         |                  | BSA | 6.0   |
| 1486.26  | FESNFNTQATNR          | Carbamidomethyl  | Lyz | 6.0   |
| 1503.21  | EYEATLEECCAK          | 2Carbamidomethyl | BSA | 4.1   |
| 1523.29  | YTEFTPTEKDEY          |                  | b2m | 4.0   |
| 1533.37  | LKECCDKPLLEK          | 2Carbamidomethyl | BSA | 6.2   |
| 1538.40  | LCVLHEKTPVSEK         | 1Carbamidomethyl | BSA | 6.8   |
| 1555.27  | DDPHACYSTVFDK         | 1Carbamidomethyl | BSA | 4.4   |
| 1568.36  | DAFLGSFLYEYSR         |                  | BSA | 4.4   |
| *1577.40 | LKPDPNTLCDEFK         | 1Carbamidomethyl | BSA | 4.6   |
| *1674.45 | ECCHGDLLECADDR        | 2Carbamidomethyl | BSA | 4.1   |
|          |                       | 1Glu->pyro-Glu   |     |       |
| *1739.58 | DDPHACYSTVFDKLK       |                  | BSA | 5.3   |
| 1748.38  | YNGVFQECCQAEDK        | 2Carbamidomethyl | BSA | 4.1   |
| 1754.52  | NTDGSTDYGILQINSR      |                  | Lyz | 4.2   |
| 1797.53  | CCAADDKEACFAVEGPK     | IPyro-           | BSA | 4.3   |
| 1002 (2  |                       | carbamidomethyl  | DCA | 4.7   |
| 1902.62  | NECFLSHKDDSPDLPK      | ICarbamidomethyl | BSA | 4.7   |
| 1911.52  | CCAADDKEACFAVEGPK     | 2Carbamidomethyl | BSA | 4.3   |
|          |                       | IPyro-           |     |       |
| *1028.52 |                       | 2Carbamidomethyl | DCA | 1 2   |
| 2020 74  |                       |                  | DSA | 4.5   |
| 2020.74  | I I ODWADCCERQEPER /  | 1Carbamidomathyl | DSA | 4.1 / |
|          | VASI RETVGDMADCCEK    |                  |     | 4.47  |
|          | WASERET FODWADECER    | 2Carbamidomethyl |     | т.Ј   |
|          |                       | 1Oxidation       |     |       |
| *2114.72 | VHKECCHGDLLECADDR     | 3Carbamidomethyl | BSA | 4.8   |
| 2248.79  | ECCHGDLLECADDRADLAK   | 3Carbamidomethyl | BSA | 4.2   |
| 2471.01  | RPCFSALTPDETYVPKAFDEK | 1Carbamidomethyl | BSA | 4.8   |
| 2488.04  | YNGVFOECCOAEDKGACLLPK | 3Carbamidomethyl | BSA | 4.7   |
| 2525.10  | QEPERNECFLSHKDDSPDLPK | 1Carbamidomethvl | BSA | 4.6   |
|          |                       | 1Gln->pyro-Glu   |     |       |

| 2542.13 | QEPERNECFLSHKDDSPDLPK     | 1Carbamidomethyl | BSA | 4.6 |
|---------|---------------------------|------------------|-----|-----|
| 2613.15 | VHKECCHGDLLECADDRADLAK    | 3Carbamidomethyl | BSA | 4.9 |
| 3039.38 | EYEATLEECCAKDDPHACYSTVFDK | 3Carbamidomethyl | BSA | 4.2 |

**Table S7.** Detailed information of peptides in Figure 7a. Peptides with asterisks are peptides that were not detected in the original digests mixtures.

| m/z      | Sequence              | Modification     | Protein | pI  |
|----------|-----------------------|------------------|---------|-----|
| 1045.98  | GTDVQAWIR             |                  | Lyz     | 5.8 |
| *1077.98 | GTDVQAWIR             | 2Oxidation       | Lyz     | 5.8 |
| 1164.11  | LVNELTEFAK            |                  | BSA     | 4.5 |
| *1202.08 | KNGERIEKVE            |                  | b2m     | 6.2 |
| 1250.12  | FKDLGEEHFK            |                  | BSA     | 5.5 |
| 1306.24  | HLVDEPQNLIK           |                  | BSA     | 5.3 |
| *1344.19 | SRHPAENGKSNF          |                  | b2m     |     |
| 1429.23  | FESNFNTQATNR          |                  | Lyz     | 6.0 |
| 1472.25  | FESNFNTQATNR          | Acetyl           | Lyz     | 6.0 |
| 1480.39  | LGEYGFQNALIVR         |                  | BSA     | 6.0 |
| 1538.40  | LCVLHEKTPVSEK         | 1Carbamidomethyl | BSA     | 6.8 |
| 1568.36  | DAFLGSFLYEYSR         |                  | BSA     | 4.4 |
| 1754.52  | NTDGSTDYGILQINSR      |                  | Lyz     | 4.2 |
| *1824.59 | RPCFSALTPDETYVPK      |                  | BSA     | 6.1 |
| 2525.10  | QEPERNECFLSHKDDSPDLPK | 1Carbamidomethyl | BSA     | 4.6 |
|          |                       | 1Gln->pyro-Glu   |         |     |

**Table S8.** Detailed information of peptides in Figure 7b. Peptides with asterisks are peptides that were not detected in the original digests mixtures.

| m/z      | Sequence      | Modification     | Protein | pI  |
|----------|---------------|------------------|---------|-----|
| 927.89   | YLYEIAR       |                  | BSA     | 6.0 |
| 1036.83  | CELAAAMKR     | 1Acetyl          | Lyz     | 8.2 |
| 1045.98  | GTDVQAWIR     |                  | Lyz     | 5.8 |
| 1051.83  | QNCDQFEK      | 1Carbamidomethyl | BSA     | 4.4 |
|          |               | 1Gln->pyro-Glu   |         |     |
| 1089.00  | GTDVQAWIR     | 1Acetyl          | Lyz     | 5.8 |
| 1121.93  | CCTESLVNR     | 1Carbamidomethyl | BSA     | 6.0 |
|          |               | 1Pyro-           |         |     |
|          |               | carbamidomethyl  |         |     |
| 1149.92  | CCTKPESER     | 1Carbamidomethyl | BSA     | 6.1 |
|          |               | 1Pyro-           |         |     |
|          |               | carbamidomethyl  |         |     |
| 1164.11  | LVNELTEFAK    |                  | BSA     | 4.5 |
| 1306.24  | HLVDEPQNLIK   |                  | BSA     | 5.3 |
| 1360.16  | TEFTPTEKDEY   |                  | b2m     | 4.0 |
| *1421.08 | ETYGDMADCCEK  | 1Carbamidomethyl | BSA     | 3.9 |
| 1429.23  | FESNFNTQATNR  |                  | Lyz     | 6.0 |
| *1444.22 | YICDNQDTISSK  | 1Carbamidomethyl | BSA     | 4.2 |
| *1464.18 | TCVADESHAGCEK | 2Carbamidomethyl | BSA     | 4.7 |

| 1472.25  | FESNFNTQATNR      | Acetyl           | Lyz | 6.0 |
|----------|-------------------|------------------|-----|-----|
| 1479.11  | ETYGDMADCCEK      | 1Carbamidomethyl | BSA | 3.9 |
|          |                   | 1Oxidation       |     |     |
| 1486.26  | FESNFNTQATNR      | Carbamidomethyl  | Lyz | 6.0 |
| 1503.21  | EYEATLEECCAK      | 2Carbamidomethyl | BSA | 4.1 |
| 1523.29  | YTEFTPTEKDEY      |                  | b2m | 4.0 |
| *1541.18 | LCVLHEKTPVSEK     | 1Carbamidomethyl | BSA | 6.8 |
| 1555.27  | DDPHACYSTVFDK     | 1Carbamidomethyl | BSA | 4.4 |
| 1731.35  | ECCHGDLLECADDR    | 3Carbamidomethyl | BSA | 4.1 |
|          |                   | 1Glu->pyro-Glu   |     |     |
| 1748.38  | YNGVFQECCQAEDK    | 2Carbamidomethyl | BSA | 4.1 |
| 1754.52  | NTDGSTDYGILQINSR  |                  | Lyz | 4.2 |
| *1786.37 | NTDGSTDYGILQINSR  | 2Oxidation       | Lyz | 4.2 |
| 1797.53  | CCAADDKEACFAVEGPK | 1Pyro-           | BSA | 4.3 |
|          |                   | carbamidomethyl  |     |     |
| 1911.52  | CCAADDKEACFAVEGPK | 2Carbamidomethyl | BSA | 4.3 |
|          |                   | 1Pyro-           |     |     |
|          |                   | carbamidomethyl  |     |     |
| *1928.53 | CCAADDKEACFAVEGPK | 3Carbamidomethyl | BSA | 4.3 |
| *1949.49 | VASLRETYGDMADCCEK | 1Carbamidomethyl | BSA | 4.3 |

## Reference

[1] B. Zhao, J. Zhuang, M. A. C. Serrano, R. W. Vachet and S. Thayumanavan, *Macromolecules*, 2017, **50**, 9734-9741.