Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2017

A loop-mediated isothermal amplification-based method

- 2 for the visual detection of Vibrio parahaemolyticus within
- only 1 hour, from shrimp sampling to results
- 4 Rui Wang ^a, Xingning Xiao ^a, Yuan Chen ^a, Jun Wu ^b, Wenjuan Qian ^a, Liu Wang ^a,
- 5 Yuan Liu ^c, Feng Ji ^d and Jian Wu ^{a*}
- 6 a College of Biosystems Engineering and Food Science, Zhejiang University,
- 7 Hangzhou, 310058, China.
- 8 ^b Linan Center for Disease Control and Prevention, Linan, 311300, China.
- 9 ^c College of Food Science and Technology, Shanghai Ocean University, Shanghai,
- 10 201306, China.
- 11 ^d The First Affiliated Hospital of College of Medicine, Zhejiang University,
- 12 Hangzhou, 310003, China.
- 13 Correspondence

- 14 (J. Wu) E-mail: <u>wujian69@zju.edu.cn.</u> Tel: 0086-571-88982180
- 15 Fax: 0086-571-88982180 College of Biosystems Engineering and Food Science,
- 16 Zhejiang University, Hangzhou 310058, China.

24 Materials and regents

- 25 A total of 26 bacterial strains including 5 V. parahaemolyticus isolates, 10 non-
- 26 parahaemolyticus Vibrio isolates and 11 non-Vibrio bacteria were used in this study.
- 27 As shown in Table S1, All strains were purchased from American Type Culture
- 28 Collection (ATCC), USA, except V. parahaemolyticus KP9 and V. parahaemolyticus
- 29 ZJ9N (kindly provided by School of Animal Science, Zhejiang University). All the
- 30 natural seafood samples were purchased from local market of Hangzhou, China.
- 31 Regents of sodium hydroxide (NaOH) and agarose were both purchased from
- 32 Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). All primers were
- 33 synthesized by Sangon Biotech Co., Ltd. (Shanghai, China). TIANamp bacteria DNA
- 34 kit was purchased from Tiangen Biotech Co., Ltd. (Beijing, China) for standard DNA
- 35 extraction. TaKaRa Taq[™] Hot Start amplification kit was purchased from Takara Bio
- 36 Inc. (Dalian, China) for PCR amplification. For LAMP amplification, Bst DNA
- 37 polymerase and thermoPol buffer were purchased from New England Biolabs Inc.,
- 38 (Ipswich, MA). Betaine was purchased from Sigma-Aldrich Co. LLC. (St Louis, MO,
- 39 USA). dNTP (2.5 mM each) was purchased from Sangon Biotech Co., Ltd. (Shanghai,
- 40 China). SYTO 9 was purchased from Thermo Fisher Scientific Inc. (Waltham, MA
- 41 USA). MgSO₄ was purchased from Sangon Biotech Co., Ltd. (Shanghai, China).
- 42 Thermostable inorganic pyrophosphatase was purchased from New England Biolabs
- 43 Inc., (Ipswich, MA).

44 Primer designed for PCR amplification.

45 The primers recognized *V. parahaemolyticus*-specific thermolabile haemolysin (*tlh*)

- 46 gene (GenBank NO. M36437) were designed by Primer premier 5.0. The tlh-F (5'-
- 47 GACATTACGTTCTTCGCCGC-3') and tlh-R (5'-GTTCTTCGCCAGTTTTGCGT-
- 48 3') were used as PCR primers and the length of DNA amplicon was 354 bp. PCR
- 49 reaction was carried out with TaKaRa Tag[™] Hot Start amplification kit (Takara Bio
- 50 Inc., Dalian, China) for 30 cycles in a MyiQ2 Real Time PCR Detection System
- 51 (BioRad, Hercules, CA, USA).

52 **Boiling method.**

- 53 100 μL of *V. parahaemolyticus* suspension was heated at 95 °C for 10 min. After
- 54 cell debris pelleted by centrifugation at 20,000 g and 4 °C for 5 min, 1 μL of the
- 55 supernatant was used as DNA template for PCR and LAMP assay.

56 Commercial kit.

- 57 TIANamp bacteria DNA kit (Tiangen Biotech Co., Ltd, Beijing, China) was used for
- 58 DNA extraction and purification according to its operation manual. DNA templates
- 59 were dissolved in 200 μL tris-EDTA (TE) buffer and stored at -20 °C. For LAMP and
- 60 PCR assay, 1 μL DNA was used as template.

61

62

63

64

65

66

68 Table S1 Bacterial isolates used in this study.

		<i>tlh</i> ampl		
Strain	Strain ID	LAMP	PCR	- Source ^a
Vibro parahaemolyticus	ATCC17802	P	P	ATCC
Vibro parahaemolyticus	ATCC33846	P	P	ATCC
Vibro parahaemolyticus	ATCC33847	P	P	ATCC
Vibro parahaemolyticus	KP9	P	P	ZJ
Vibro parahaemolyticus	ZJ9N	P	P	ZJ
Vibrio harveyi	ATCC14126	N	N	ATCC
Vibrio vulnificus	ATCC27562	N	N	ATCC
Vibrio vulnificus	ATCC29306	N	N	ATCC
Vibrio vulnificus	ATCC33816	\mathbf{N}	N	ATCC
Vibrio cholerae	ATCC14035	\mathbf{N}	N	ATCC
Vibrio cincinnatiensis	ATCC35912	N	N	ATCC
Vibrio fluvialis	ATCC 33809	\mathbf{N}	N	ATCC
Vibrio mimicus	ATCC33653	\mathbf{N}	N	ATCC
Vibrio mimicus	ATCC33655	\mathbf{N}	N	ATCC
Vibrio natriegens	ATCC14048	\mathbf{N}	N	ATCC
E. coli 0157:H7	ATCC43889	\mathbf{N}	N	ATCC
Escherichia coli	ATCC25922	N	N	ATCC
Staphylococcus aureus subsp. aureus	ATCC6538	N	N	ATCC
Bacillus subtilis	ATCC6633	N	N	ATCC
Candida albicans	ATCC10231	N	N	ATCC
Salmonella typhimurium	ATCC14028	N	N	ATCC
Aspergillus brasiliensis	ATCC16404	N	N	ATCC
Escherichia coli	ATCC8739	N	N	ATCC
Pseudomonas aeruginosa	ATCC9027	N	N	ATCC
Listeria monocytogenes	ATCC19115	N	N	ATCC

⁶⁹ P/N, positive/negative results.

^{70 &}lt;sup>a</sup>ATCC, American Type Culture Collection. ZJ, provided by School of Animal

⁷¹ Science, Zhejiang University.

 $\textbf{Table S2 Estimation of the sensitivity of traditional sampling method for } \textit{V. parahaemolyticus} \ \textbf{detection from spiked shrimp samples}. \\$

concentration of			Ct value		mean of Ct	CD.	DCD (0/)	mean of all	CDr	DCD/0/\r	Time (min)
V. parahaemolyticus (CFU/g)	repeat	1	2	3	values	SD	RSD (%)	Ct values	SDr	RSD(%)r	Time (min) ^c
	1	20.11	20.30	20.25	20.22	0.10	0.49				
1.25×10 ⁶	2	20.11	20.15	20.03	20.10	0.06	0.30	20.29	0.23	1.16	20.29
	3	20.67	20.42	20.56	20.55	0.13	0.61				
	1	22.21	22.45	22.33	22.33	0.12	0. 54				
1.30×10 ⁵	2	21.87	21.63	21.89	21.80	0.14	0.66	22.04	0.27	1.23	22.04
	3	22.06	21.87	22.02	21.98	0.10	0.46				
	1	24.97	25.03	24.82	24.94	0.11	0. 43				
4.50×10 ⁴	2	27.43	27.39	27.21	27.34	0.12	0.43	25.77	1.37	5.31	25.77
	3	24.91	25.02	25.11	25.01	0.10	0.40				
	1	30.53	31.31	31.11	30.98	0.41	1.31				
3.00×10^{3}	2	32.07	32.18	33.02	32.42	0.52	1.60	31.58	0.75	2.38	31.58
	3	31.00	31.49	31.48	31.32	0.28	0.89				
	1	43.61	_ f	_f	43.61	_ f	_ f				
2.50×10^{2}	2	_ f	42.55	_f	42.55	_ f	_ f	43.08	0.75	1.74	43.08
	3	_ f									
0.00×10 ⁰	1	_ f									
	2	_ f	_f	_ f	_ f						
	3	_ f	_ f	_f	_ f	_ f	_ f				

^rCaculations based on all Ct values.

^fNo data.

^c Every cycle takes 60s.

Table S3 Primers of LAMP and PCR for the detection of total $\it V.$ parahaemolyticus.

		Sequence (5'-3')	Gene position
LAMP primers	Tlh-FIP	CTGTCACCGAGTGCAACCACTTAACCACACGATCTGGAGCA	508-526/560-581
	Tlh-BIP	GCATCACAATGGCGCTTCCCACCGTTGGAGAAGTGACCTA	610-629/650-669
	Tlh-F3	CGCTGACAATCGCTTCTCAT	486-505
	Tlh-B3	GTTCTTCGCTTTGGCAATGT	686-705
	Tlh-LF	TGTTGATTTGATCTGGCTGC	540-559
	Tlh-LB	TAACCCGAACAGCTGGTTC	630-648
PCR primers	Tlh-F	GACATTACGTTCTTCGCCGC	469-488
	Tlh-R	GTTCTTCGCCAGTTTTGCGT	803-822

Table S4 Amplification components for fluorescent LAMP assay.

Component	Final concentration
ThermoPol Buffer	1X
MgSO ₄	6 mM
FIP and BIP	1.6 μM (each)
F3 and B3	0.2 μM (each)
LF and LB	0.4 μM (each)
Betaine	0.8 M
dNTP	1.4 mM
Bst DNA polymerase	8 U
SYTO 9	4 μΜ
DNA template	1 μL
Sterile water	up to 50 μL

Table S5 Detection of V. parahaemolyticus in natural seafood samples.

Sample type	No. of samples	Visual detection method	PCR	Culture-based method
Shrimp	32	3	3 ^a	3 ^a
Cuttlefish	11	2	2 ^a	2 ^a
Oyster	10	4	3 ^a	4 ^a
Jellyfish	15	2	2 ^a	2 ^a
Crab	28	4	4 ^a	4 ^a
Sleevefish	16	3	3 ^a	3 ^a
Lobster	17	2	2 ^a	2 ^a
Weever	12	2	1 ^a	1 ^a
		3	3 ^a	3 ^a
Razor clam	33		3 ^a	2 ^a
Clam	42	3	3	2
Scallop	23	2	1 ^a	2 ^a
Porphyra	36	2	2 ^a	2ª
Laminaria japonica	28	3	3 ^a	3 ^a
Total	303	35	32	33
Positive rate	-	11.6 %	10.6 %	10.9 %

^a, LAMP positive.

Table S6 LAMP amplification components for visual detection.

Component	Final concentration
ThermoPol Buffer	1X
MgSO ₄	6 mM
FIP and BIP	1.6 μM (each)
F3 and B3	0.2 μM (each)
LF and LB	0.4 μM (each)
Betaine	0.8 M
dNTP	1.4 mM
Bst DNA polymerase	8 U
SYTO 9	4 μΜ
Thermostable inorganic pyrophosphatase	0.1 U
DNA template	1 μL
Sterile water	up to 50 μL