Supplementary materials

Development and validation of a green chromatography for the determination of anthocyanins in haskap berry, mulberry and

blackberry

Jun Sang, Qun Ma, Cui-qin Li*

Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laborat

College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, China

Supplementary Table 1 Mobile phases of liquid chromatography for analysing anthocyanins from various samples in literatures.

Samples	Mobile phase composition	Reference ^a

* Corresponding author. Tel.: +86 29 85310266; fax: +86 29 85310546.

E-mail address: <u>licuiqin16@snnu.edu.cn</u> (C.-Q. Li)

	A phase (v/v)	B phase (v/v)	
Grape skin	10% formic acid in water	10% formic acid in methanol	24
Grape seed and skin	0.2% TFA in water	0.2% TFA in acetonitrile	25
Lotus petal	TFA/formic acid/water	TFA/formic acid/acetonitrile/water	26
	(0.1:2:97.9)	(0.1:2:35:62.9)	
Sweet cherry	0.1% TFA in water	0.1% TFA in methanol	27
Andean potato	4.5% formic acid in water	acetonitrile	28
Red cabbage	4.5% formic acid in water	acetonitrile	29
Aronia melanocarpa	0.5% TFA in water	0.5% TFA in acetonitrile	30
Lycium ruthenicum Murray	5% formic acid in water	acetonitrile	31
Purple sweet potato	0.5% TFA in water	acetonitrile	32
Bluebarry	Formic acid/water/ acetonitrile	Formic acid/water/ acetonitrile	17
	(10:87:3)	(10:40:50)	17
Purple tomato	5% formic acid in water	Formic acid/acetonitrile/water	33
	570 formite actu ni water	(5:47.5:47.5)	

^a References are as follows:

- 24 M. O. Downey and S. Rochfort, Simultaneous separation by reversed-phase high-performance liquid chromatography and mass spectral identification of anthocyanins and flavonols in Shiraz grape skin, *J. Chromatogr. A*, 2008, **1201**, 43-47.
- 25 S. Munoz, M. Mestres, O. Busto and J. Guasch, Determination of some flavan-3-ols and anthocyanins in red grape seed and skin extracts by HPLC-DAD: Validation study and response comparison of different standards, *Anal. Chim. Acta*, 2008, **628**, 104-110.
- 26 Z. Yang, X. Wei, F. Gao, L. Wang, H. Zhang, Y. Xu, L. Li, Y. Ge, J. Zhang and J. Zhang, Simultaneous analysis of anthocyanins and flavonols in petals of lotus (*Nelumbo*) cultivars by high-performance liquid chromatography-photodiode array detection/electrospray ionization mass spectrometry, *J. Chromatogr. A*, 2009, **1216**, 106-112.
- 27 C. G. Grigorasa, D. Destandau, S. Zubrzycki and C. Elfakir, Sweet cherries anthocyanins: An environmental friendly extraction and purification method, *Sep. Purif. Technol.*, 2012, **100**, 51-58.
- 28 M. M. Giusti, M. F. Polit, H. Ayvaz, D. Tay and I. Manrique, Characterization and quantitation of anthocyanins and other phenolics in native Andean Potatoes, *J. Agric. Food Chem.*, 2014, **62**, 4408-4416.
- 29 N. Ahmadiani, R. J. Robbins, T. M. Collins and M. M. Giusti, Anthocyanins Contents, Profiles, and Color Characteristics of Red Cabbage Extracts from Different Cultivars and Maturity Stages, J. Agric. Food Chem., 2014, 62, 7524-7531.
- 30 H. Wangensteen, M. Braunlich, V. Nikolic, K. E. Malterud, R. Slimestad and H. Barsett, Anthocyanins, proanthocyanidins and total phenolics in four cultivars of aronia: Antioxidant and enzyme inhibitory effects, *J. Funct. Foods*, 2014, **7**, 746-752.
- 31 H. Jin, Y. Liu, F. Yang, J. Wang, D. Fu, X. Zhang, X. Peng and X. Liang, Characterization of anthocyanins in wild *Lycium ruthenicum* Murray by HPLC-DAD/QTOF-MS/MS, *Anal. Methods*, 2015, **7**, 4947-4956.
- 32 Y, Hu, L. Deng, J. Chen, S. Zhou, S. Liu, Y. Fu, C. Yang, Z. Liao and M. Chen, An analytical pipeline to compare and characterise the anthocyanin antioxidant activities of purple sweet potato cultivars, *Food Chem.*, 2016, **194**, 46-54.
- 33 X. Su, J. Xu, D. Rhodes, Y. Shen, W. Song, B. Katz, J. Tomich, W. Wang, Identification and quantification of anthocyanins in transgenic purple tomato, *Food Chem.*, 2016, **202**, 184-188.

	Precision ^b				Recovery		
Samples	Intra-day precision	Inter-day precision	Repeatability ^b	Stability ^b	Berry sample solution ^b	Cyanidin-3- <i>O</i> -glucoside solution ^c	Mixture solution ^b
Haskap berry ^d	22064.2	22084.8	22064.2	22064.2	11261.2	3566.7	135354
			21796.9	22170.9			15555.4
	22133.4	21802.0	22258.3	21952.5			13401.1
		21002.0	22300.9	21968.0			13401.1
	21770 6	22001 7	22271.6	22301.9			13458.6
	21//0.0	22091.7	22276.5	21816.3			
Mulberry °	15189.8	15189.8 15263.3	15189.8	15189.8	7998.4	3566.7	8859.4
	14995.9 15336.		15495.9	15432.6			
		15336.0	15581.4	14896.7			0000 1
	15620.4	14996.1	14869.4	15603.1			0090.1
			14909.5	15068.4			8012.0
			15446.8	15001.2			8912.9
Blackberry ^e	2241.5 2	22(1.0	2241.5	2241.5	2025.5	3566.7	2460.0
		2261.9	2245.3	2232.9			5409.0
	2243.4 2244	2244 5	2171.6	2262.0			2461 7
		2244.5	2255.9	2183.3			3401.7
	2250.8	2260.7	2328.2	2261.9			2422.4
			2300.7	2227.5			5422.4

Supplementary Table 2 The original data of the determination of intra- and inter-day precision, repeatability, stability and recovery of cyanidin-3-*O*-glucoside in haskap berry, mulberry and blackberry.^a

^a The data are the values of peak area, and the precision, repeatability and stability were directly evaluated by the peak area of analyte.

 $^{\text{b}}$ The injection volume is 5 μL for HPLC analysis.

 $^{\rm c}$ The injection volume is 1 μL for HPLC analysis.

^d Means 200 µL of cyanidin-3-O-glucoside solution was added into 400 µL of berry sample solution for recovery determination.

^e Means 50 µL of cyanidin-3-O-glucoside solution was added into 500 µL of berry sample solution for recovery determination.

Supplementary Fig. 1 Ms spectrum (A) and MS/MS spectrum (B) of anthocyanin 8.

Supplementary Fig. 2 Three-dimensional chromatograms of cyanidin-3-*O*-glucoside in standard solution (A), haskap berry sample (B and E), mulberry sample (C) and blackberry sample (D).

Supplementary Fig. 3 The second-dimension HPLC chromatograms of cyanidin-3-*O*-glucoside (peak 1) from standard solution (A), blackberry sample (B), mulberry sample (C) and haskap berry sample (D). The chromatographic conditions were as follows: the analysis column was a ZORBAX Eclipse Plus C18 column (150 mm \times 4.5 mm, 5 µm particle, Agilent Technologies Co., Ltd., USA); the mobile phase consisted of a trifluoroacetic acid aqueous solution (0.1%, v/v) and acetonitrile; gradient elution program was 10-25% of acetonitrile from 0 to 15 min; and the other parameters were same as the developed method.

Supplementary Fig. 4 HPLC chromatograms of recovery determination of cyanidin-3-*O*-glucoside (peak 1) from haskap berry sample (A), mulberry sample (B) and blackberry sample (C).