Supporting information for

High Sensitivity Cysteine Detection Using a Novel Fluorescent Ag

Nanocluster

Hao Min Liu, Gang Mei, Shu Chen, Yun Fei Long*

Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, PR China.

Fig.S1. The optimizing experiments of synthesis LSPR-AgNCs. (a) The fluorescence intensity of LSPR-AgNCs (diluted 50-fold)in different irradiation time (120 min, 150 min, 180 min, 210 min, 240 min and 70 min). (b) Different carboxymethyl dextran concentrations $(5.0 \times 10^{-5}, 1.0 \times 10^{-4}, 5.0 \times 10^{-4}, 1.0 \times 10^{-3}, 5.0 \times 10^{-5}$ M). (c) Different Ag⁺ concentrations $(2.0 \times 10^{-4}, 3.0 \times 10^{-4}, 4.0 \times 10^{-4}, 5.0 \times 10^{-4}, 1.0 \times 10^{-3}, 5.0 \times 10^{-3}, 1.0 \times 10^{-2}$ M). (d) The degree of acid/alkali of solution was adjusted by NaOH and NH₃·H₂O. We study different concentrations NaOH and NH₃·H₂O (shown in d, Fig. S1).The optimizing conditions of synthesis LSPR-AgNCs was presented, i.e., irradiation time (240 min), carboxymethyl dextran(1.0×10^{-3} M), Ag⁺(1.0×10^{-3} M), and the ratio of NaOH to NH₃·H₂O (NaOH(5 mM)+ NH₃·H₂O(17 mM)).

Fig. S2. The emission fluorescence spectra of as- prepared Ag nanoclusters (spectrum 1) and the diluted 50-fold Ag nanoclusters (spectrum 2).

Fig. S3. The fluorescence intensity of LSPR-AgNCs (diluted 50-fold) in the absence (curve 1) and presence (curve 2) of Cys (1×10^{-7} mol·L⁻¹) with different temperature including 0 °C, 25 °C and 50 °C. The curve 3 represented the change of ΔI with different temperature.

Fig. S4. Fluorescence decay as a function of time of LSPR-AgNCs, LSPR-AgNCs+BR and LSPR-AgNCs+BR+Cys.((BR=6.80, c_{Cys} = 1.0×10⁻⁷ mol·L⁻¹).

Fig. S5. The DLS spectra of the Ag NCs. Curve 1 is DLS spectra of the Ag NCs without Cys. Curve 2 is the DLS spectra of the Ag NCs after adding Cys.

Fig. S6. The UV-Vis spectra of the Ag NCs. Curve 1 is the absorption spectrum of the Ag NCs without Cys. Curve 2 is the absorption spectrum of the Ag NCs mixture with Cys.

 Table S1. The fluorescence lifetimes of LSPR-AgNCs+BR and LSPR-AgNCs+BR+Cys.

Sample	$ au_1, B_1$	$ au_2, B_2$	Lifetime (ns)
LSPR-AgNCs+BR	2.1896, 33.60%	10.5884, 66.40%	7.7664
LSPR-AgNCs+BR+Cys	1.1585, 21.81%	6.2982, 78.19%	5.1772

 B_1, B_2 are the relative amplitude of τ_1, τ_2 .

Table S2 Zeta Potential measurements data of LSPR-AgNCs, LSPR-AgNCS-BR and LSPR-

AgNCS-BR-Cys

Sample		T (°C)	Ave	Average ZP (mV)	
LSPF	PR-AgNCs+BR 25			-14 mV	
LSPR-A	agNCs+BR+Cys	25	-14.2 mV		
Sample	Table S3. Determination res	ults of Cys in Comp Average value (mol/L)	ound amino acid in Specified (mol/L)	njection. RE (%)	
	3.33×10 ⁻³ ;	3 25×10-3	3 30×10-3	1 51	

Table S4 Comparison with other sensors for Cys detection

Method	Probe	Linear range	Detectio n limit	Ref.
Photoluminescence	NC-dots/AuNPs	0.01-2.0 μM	4.00 nM	[1]
Absorbance	NC-dots/AuNPs	0.02 - 2.0 μM	8.00 nM	[1]
Absorbance	N-butyl-4-bromo-3-nitro-1,8- naphthalimide	0.1-0.9 mM	-	[2]
Absorbance	di-N-methyl-N- hydroxyethylaniline squaraine(SQ)	10-700 nM	3.90 nM	[3]
Fluorescence	Acrylic acid 3-acetyl-2-oxo-2 H- chromen-7-ylester(ACA)	0-40 µM	0.65µM	[4]
Fluorescence	Thiol-disulfide	0-10 µM	0.80 µM	[5]
Fluorescence	Ag clusters	0.025-6.0 μM	20 nM	[6]
Fluorescence	AgNCs	0-1 µM	3 nM	[7]
Fluorescence	LSPR-AgNCs	0.5-100 nM	0.32 nM	This work

References

[1] J. Deng, Q. Lu, Y. Hou, M. Liu, H. Li, Y. Zhang, S. Yao, Nanosensor composed of N-doped carbon dots and Au nanoparticles for high selective detection of cysteine with multiple signals, Anal. Chem. 87 (2015) 2195-2203.

[2] X. Zeng, X. Zhang, B. Zhu, H. Jia, Y. Li, A highly selective wavelength-ratiometric and colorimetric probe for cysteine, Dyes. Pigments. 94 (2012) 10-15.

[3] Z. Yan, S. Guang, H. Xu, X. Liu, An effective real-time colorimeteric sensor for sensitive and selective detection of cysteine under physiological conditions, Analyst 136 (2011) 1916-1921.

[4] X. Dai, Q.H. Wu, P.C. Wang, J. Tian, Y. Xu, S.Q. Wang, J.Y. Miao, B.X. Zhao, A simple and effective coumarin-based fluorescent probe for cysteine, Biosens.Bioelectron. 59 (2014) 35-39.

[5] L.Q. Zheng, Y. Li, X.D. Yu, J.J. Xu, H.Y. Chen, A sensitive and selective detection method for thiol compounds using novel fluorescence probe, Anal. Chim. Acta 850 (2014) 71-77.

[6] L. Shang, S. Dong, Sensitive detection of cysteine based on fluorescent silver clusters, Biosens. Bioelectron., 24 (2009) 1569-1573.

[7] X. Yuan, Y.Q. Tay, X.Y. Dou, Z.T. Luo, D.T. Leong, J.P. Xie, Glutathione-Protected Silver Nanoclusters as Cysteine-Selective Fluorometric and Colorimetric Probe, Anal. Chem. 85(2013) 1913–1919