Electronic Supplementary Information

A Label-Free Aptasensor for Highly Efficient ATP Detection by Using Exonuclease I and Oligonucleotide-templated Fluorescent Copper Nanoparticles

Qiyong Cai^{a,b}, Jia Ge^a, Huihui Xu^b, Lin Zhang^{a,*}, Yalei Hu^a, Zhongming Huang^a, and Zhaohui Li^{a,b,*}

^a College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China

^b Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha 410082, China

^{*} Corresponding authors. Tel.: +86-371-67783007.

E-mail address: zhaohui.li@zzu.edu.cn (Z. H. Li), zhanglin@zzu.edu.cn (L. Zhang).

Fig. S1. Typical TEM image of oligonucleotide-templated copper nanoparticles.

Method	Range	LOD	Reference
MB ¹ -based assay	0.8 –80 µM	0.5 μΜ	[1]
GO ² -based molecular beacon assay	$5-2500\;\mu M$	2 µM	[2]
AuNPs ³ -based aptamer	$4.4 - 132.7 \ \mu M$	0.6 µM	[3]
UCNPs ⁴ -based biosensor	$0.1 - 0.75 \ mM$	20 µM	[4]
Sandwich-type FRET ⁵ assay	2 –16 µM	1.70 µM	[5]
]Aptamer-target recognition based	$62.5-2500\ \mu M$	1.45 µM	[6]
aptasensor			
AIE ⁶ -active probe	0-1 mM	24 µM	[7]
Microfluidic paper analysis	$0.5-10\ \mu M$	1 µM	[8]
GOx signaling trigger	$10-100 \ \mu M$	10 µM	[9]
Fe ³⁺ - fluorescence carbon dots	$0.5-50\ \mu M$	0.48 µM	[10]
Zn ²⁺ -Cysteine capped CdTe QDs ⁷	$5-50\ \mu M$	2.07 µM	[11]
Aptamer fluorescence anisotropy	$1-200\ \mu M$	1 µM	[12]
sensors			
Oligonucleotide-based CuNPs system	$1-80\;\mu M$	0.5 μΜ	This work

 Table S1 Comparision of different methods for ATP determination.

¹MB, Molecular Beacon

²GO, Graphene Oxide

³AuNPs, Gold nanoparticles

⁴UCNPs, Upconversion nanpparticles

⁵FRET, Fluorescence resonance energy transfer

⁶AIE, Aggregation-induced emission

⁷QDs, Quantum dots

Reference

- S.J. Zhen, L.Q. Chen, S.J. Xiao, Y.F. Li, P.P. Hu, L. Zhan, L. Peng, E.Q. Song, C.Z. Huang, Anal. Chem. 82 (2010) 8432-8437.
- [2] Y. He, Z.-G. Wang, H.-W. Tang, D.-W. Pang, Biosens. Bioelectron. 29 (2011) 76-81.
- [3] J. Wang, L. Wang, X. Liu, Z. Liang, S. Song, W. Li, G. Li, C. Fan, Adv. Mater. 19 (2007) 3943-3946.
- [4] K. Song, X. Kong, X. Liu, Y. Zhang, Q. Zeng, L. Tu, Z. Shi, H. Zhang, Chem. Commun. 48 (2012) 1156-1158.
- [5] X. He, Z. Li, X. Jia, K. Wang, J. Yin, Talanta, 111 (2013) 105-110.
- [6] Y. Tan, X. Zhang, Y. Xie, R. Zhao, C. Tan, Y. Jiang, Analyst, 137 (2012) 2309-2312.
- [7] K. Ma, H. Wang, H. Li, S. Wang, X. Li, B. Xu, W. Tian, Sens. Actuators. B. Chem. 230 (2016) 556-558.
- [8] S.-Q. Jin, S.-M. Guo, P. Zuo, B.-C. Ye, Biosens. Bioelectron. 63 (2015) 379-383.
- [9] S. Sitaula, S.D. Branch, M.F. Ali, Chem. Commun. 48 (2012) 9284-9286.
- [10] Z. Zhan, J. Cai, Q. Wang, Y. Su, L. Zhang, Y. Lv, Luminescence, 31 (2016)626-632.
- [11] F. Shi, Y. Li, Z. Lin, D. Ma, X. Su, Sens. Actuators. B. Chem. 220 (2015)433-440.
- [12] Q. Zhao, Q. Lv, H. Wang, Biosens. Bioelectron. 70 (2015) 188-193.