Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2017

## **Supplementary Information**

## Novel method of nicotine quantification in electronic cigarette liquids and aerosols

Mumiye A. Ogunwale, M.S.<sup>1,4</sup>; Yizheng Chen, Ph.D.<sup>2</sup>; Whitney S. Theis, M.S.<sup>3,4</sup>; Michael H. Nantz, Ph.D.<sup>1,4</sup>; Daniel J. Conklin, Ph.D.<sup>3,4</sup>, Xiao-An Fu, Ph.D.<sup>2,4\*</sup>

<sup>1</sup>Department of Chemistry, <sup>2</sup>Department of Chemical Engineering, <sup>3</sup>Diabetes and Obesity Center, and <sup>4</sup>American Heart Association – Tobacco Regulation and Addiction Center, University of Louisville, Louisville, KY 40208

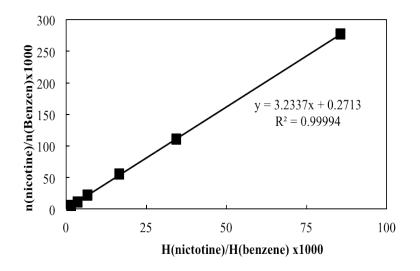
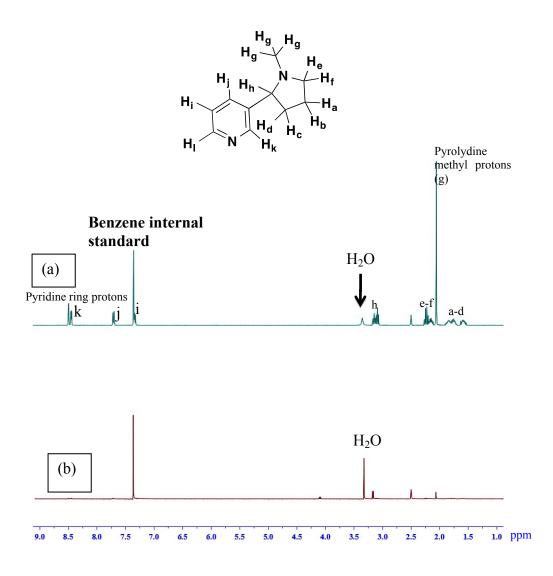
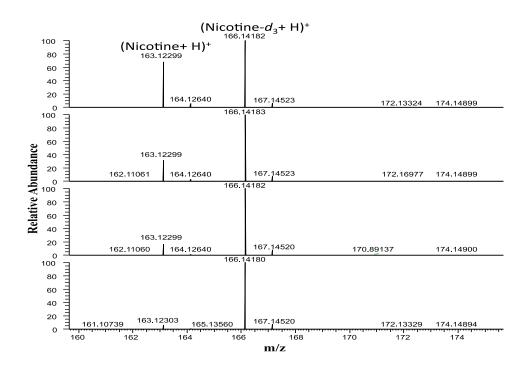





Figure S1 Plot of n(nicotine)/n(benzene) vs. H(nicotine)/H(benzene), serving as a calibration curve for <sup>1</sup>H NMR measurement of nicotine protonation.



**Figure S2.** (a) <sup>1</sup>H NMR spectra (DMSO- $d_6$ ) of neutral nicotine and (b) <sup>1</sup>H NMR spectra (DMSO- $d_6$ ) of extracted nicotine after 30 minutes of protonation in water and HCl mixture (Less than 2% of free base left unprotonated). Quantification achieved by introduction of benzene as internal standard.



**Figure S3.** Comparison of FT-ICR-MS spectra of standard calibration curve working solutions, each spiked with 7.78 nmol nicotinium- $d_3$  as an internal standard. The nicotine peak grows relative to the internal standard peak as the nicotine concentration increases.