A simple and fast method based on functionalized magnetic nanoparticles for

determination of Ag(I), Au(III) and Pd(II) in mine stone, road dust and water samples

Sara Karami, Homeira Ebrahimzadeh*, Ali Akbar Asgharinezhad

Faculty of Chemistry, Shahid Beheshti University, G.C., Evin, Tehran, Iran

* Corresponding author. Tel.: +98 21 29902891; fax: +98 21 22403041.

E-mail address: h-ebrahim@sbu.ac.ir (H. Ebrahimzadeh)

Fig. 1S: TGA/DTA curves of Fe₃O₄@Mu nanosorbent.

Table 1S

The tolerance limit of potentially interfering ions in the determination of Ag(I), Au(III) and Pd(II) ions.

Interfering Ions	Tolerable concentration ratio X/Ag(I), Au(III) - and Pd(II)	Recovery (%)			
		Ag(I)	Au(III)	Pd(II)	
Na ⁺	10000	98.0 ± 2.0	97.3 ± 2.7	99.1 ± 1.9	
K^+	10000	96.5 ± 1.6	94.8 ± 2.0	99.3 ± 2.5	
Ca ²⁺	1000	97.8 ± 2.3	96.6 ± 3.0	98.4 ± 2.1	
Mg^{2+}	1000	98.5 ± 2.0	97.3 ± 2.8	98.1 ± 1.8	
Pb ²⁺	1000	99.0 ± 2.0	97.2 ± 3.5	98.3 ± 2.6	
Mn^{2+}	1000	97.4 ± 2.8	98.3 ± 1.4	98.8 ± 2.0	
Zn^{2+}	1000	98.8 ± 1.7	99.0 ± 1.0	97.5 ± 2.8	
Ni ²⁺	1000	97.2 ± 2.4	97.9 ± 2.8	98.0 ± 3.2	
Co ²⁺	1000	98.7 ± 3.0	96.5 ± 2.0	97.3 ± 2.0	
Cu^{2+}	1000	99.2 ± 1.9	99.3 ± 3.2	97.6 ± 2.4	
Cr ³⁺	1000	96.0 ± 1.0	95.3 ± 1.1	95.3 ± 1.1	
Pt^{2+}	100	94.6 ± 2.0	93.7 ± 2.0	95.6 ± 2.1	
Hg^{2+}	100	97.6 ± 3.1	94.1 ± 2.2	96.8 ± 2.0	
Br	5000	96.7 ± 1.8	97.2 ± 2.0	95.2 ± 2.6	
NO ₃ -	2000	97.0 ± 1.5	98.8 ± 2.0	98.2 ± 2.0	
CrO ₄ ²⁻	100	94.1 ± 3.5	95.9 ± 2.3	95.0 ± 1.6	
AsO ₄ ³⁻	100	96.0 ± 1.7	95.5 ± 2.0	94.1±2.4	

Table 2S

Comparison of the proposed method with other methods applied for the extraction and determination of target ions.

Detection system	Sorbent	Analytes	LOD a	LDR	Sorption time (min)	SC ^b	RSD (%)	Ref.
ICP-OES ^c	Polythiophene-coated Fe ₃ O ₄ NPs	Ag, Au, Pd	0.2-2.0	0.75-100	12	-	4.2	[1]
FAAS	SBA ^d -15-NH ₂	Ag	4.0	-	-	137	1.7	[3]
FI ^d -FAAS	Silica gel based chelating sorbent	Ag, Au, Pd	1.3-21	-	40	24.5-50.9	3.0	[26]
FI-FAAS	Carboxylated pillar[5]arene	Au, Pd	15.9-16	50-1000	-	12-16	< 0.8	[27]
FAAS	Fe ₃ O ₄ @murexide NPs	Ag, Au, Pd	0.15-0.6	0.5-400	5.0	34-50	5.0-7.5	This work

 $a \mu g L^{-1}$

^b Sorption capacity (mg g⁻¹)

^c Inductively coupled plasma optical emission spectrometry

^d Santa Barbara Amorphous type material

^eFlow injection

[26] P. Liu, Q. Pu, Z. Su, Analyst 2000, 125, 147-150.

[27] S.-Y. Zhou, N. Song, S.-X. Liu, D.-X. Chen, Q. Jia, Y.-W. Yang, Microchim. Acta 2014, 181, 1551-1556.