Supporting Information

Iron- core/carbon-shell nanoparticles with intrinsic peroxidase

activity: new platform for mimetic glucose detection

N. S. Surgutskaya,^a M. E. Trusova,^a G. B. Slepchenko,^b A. S. Minin,^c A. G. Pershina,^{a,d} M. A. Uimin,^c A. E. Yermakov^c and P. S. Postnikov^e*

^aDepartment of Biotechnology and Organic Chemistry, Tomsk Polytechnic University, Tomsk, 634050, Russia

^bDepartment of Physical and Analytical Chemistry, Tomsk Polytechnic University, Tomsk, 634050. Russia

^cInstitute of Metal Physics, Ural Branch, Russian Academy of Science, Yecaterinburg, 620990, Russia

^dSiberian State Medical University, Tomsk, 634050, Russia

^eDepartment of Technology of Organic Substrates and Polymer Materials, Tomsk Polytechnic University, Tomsk, 634050, Russia e-mail: postnikov@tpu.ru

Fig. S1 The peroxidase-like activity of Fe@C nanoparticles in dependence of pH (a), (b) temperature (600μ L of 0.1 M NaOAc buffer (pH=3.6) containing 16 µg/ml Fe@C and 1 mM TMB as substrate) (c) Fe@C concentration (600μ L of 0.1 M NaOAc (pH=3,6) at 40 °C with 1 mM TMB as substrate).

Fig. S2 Dependence of peroxidase-like activity of Fe@C NPs after 2h incubation in solutions with different pH (a) and temperature (b). The relative activity of nanomaterial were measured after five-times washing with water in 600 of 0.1 M NaOAc (pH=3,6) at 40 °C with 1 mM TMB as substrate. Error bars represent the standard deviation of three measurements.

Substrate	Kinetic parameter	PBMNPs	Fe ₃ O ₄	Fe@C	C ₆₀ [C(COOH) ₂] ₂	HRP	Fe ₃ O ₄ @C
H ₂ O ₂	$K_m (mM)^a$	323,6	154,0	114,4	24,58	3,70	0,072
	V _{max} (Ms ⁻¹) ^b	1,2*10-6	9.8*10 ⁻⁸	35*10-8	0.347*10-8	8.71*10 ⁻⁸	18,0*10-8
ТМБ	$K_m (mM)^a$	0,30	0,098	0,1	0,23	0,43	0,38
	V _{max} (Ms ⁻¹) ^b	1,1*10-6	3,4*10-8	34*10-8	0.40*10 ⁻⁸	10*10-8	74,0*10 ⁻⁸
Ref.		[1]	[2]	This work	[3]	[2]	[4]

Table S1 Comparison of the kinetic parameters of Fe@C nanoparticles, HRP and other nanomaterials.

^a Michaelis constant; ^b maximal reaction velocity

Fig. S3 Absorbance at 652 nm of detection system in dependence of GOx concentration. Experiments were carried out with 1 mM glucose stock solution according to the two-step procedure. Error bars represent the standard deviation of three measurements.

Fig. S4 Absorbance at 652 nm of detection system in dependence of incubation time with GOx. Experiments were carried out with 1 mM glucose stock solution according to the two-step procedure. Error bars represent the standard deviation of three measurements.

Fig.S5 Dependence of absorbance of detection system at 652 nm in incubation time of the reaction mixtures with Fe@C. Experiments were carried out with 1 mM glucose stock solution according to the two-step procedure. Error bars represent the standard deviation of three measurements.

Nanomaterial	Linear range (µM)	LOD (µM)	Ref.	
C ₆₀ [C(COOH) ₂] ₂	1-40	0.5	[3]	
Fe ₃ O ₄ @C	6-100	2	[5]	
Fe ₃ O ₄ -porphyrin compositions	25-50	2.21	[6]	
Graphene oxide– Fe3O4	2–200	0.74	[7]	
Nanoceria/DNA	1-200	8.9	[8]	
Fe@C	2.31-37.0	0.21	This work	

Table S2 Comparison of colorimetric methods for glucose detection based on enzyme mimics of nanoparticles

Glucose assay kit

For enzymatic glucose assay, juice samples were diluted 20 folds. Then, 10 μ L of diluted juice samples or 10 μ L standard glucose solution (10 mM) were added to 1 mL of the standard reagent solution contain GOx and HRP in PBS buffer. The resulting solutions were incubated at 37 °C for 10 min. Absorbance of each sample were measured at 652 nm. The glucose concentration (mM) of each sample was calculated by the equation:

$$C = \frac{E}{E_c} \cdot 10,$$

where E and E_c is the absorbance of measured sample and calibration standard solution respectively and 10 is the glucose concentration of standard solution.

Juice sample	Result in diluted Samples (6000) (µM)	Added	Recovery (%)	RSD (n=5) %	Experimental Result (mM)	Glucose assay kit (mM)
Banana	19,66			1.21	117.96±1.24	119.70±0.74
Apple	21,54			1.74	129.19±1.96	128.34 ± 0.50
Pea	16,98	5 10 15 20	96.8 94.7 97.2 98.0	2.06	101.95±1.79	99.18±1.17
Strawberry	33,21			3.20	199.67±5.56	199.65±1.40
Pomegranate	34,12			0.97	204.71±1.74	203.41±1.65

Table S3 Determination of glucose in juice samples

References

- 1. X. Zhang, S. Gong, Y. Zhang, T. Yang, C. Wang and N. Gu, J. Mater. Chem., 2010, 20, 5110-5116.
- 2. L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, T. Wang, J. Feng, D. Yang, S. Perrett and X. Yan, Nature Nanotechnology, 2007, 2, 577-583.
- 3. R. Li, M. Zhen, M. Guan, D. Chen, G. Zhang, J. Ge, P. Gong, C. Wang and C. Shu, Biosensors and Bioelectronics, 2013, 47, 502-507.
- 4. Q. An, C. Sun, D. Li, K. Xu, J. Guo and C. Wang, ACS Appl. Mater. Interfaces, 2013, 5, 13248-13257.
- 5. Q. Li, G. Tang, X. Xiong, Y. Cao, L. Chen, F. Xu and H. Tan, Sensors and Actuators B, 2015, 215, 86-92.
- 6. Q. Liu, H. Li, Q. Zhao, R. Zhu, Y. Yang, Q. Jia, B. Bian, L. Zhuo, Materials Science and Engineering: C, 2014, 41, 142–151.
- 7. Y. Dong, H. Zhang, Z.U. Rahman, L. Su, X. Chen, J. Hu, X. Chen, Nanoscale, 2012, 4, 3969–3976.
- 8. B. Liu, Z. Sun, P.J. Huang and J. Liu, J. Am. Chem. Soc., 2015, 137, 1290-1295.