Electronic Supplementary Information for

A Visual Test Paper based on Pb(II) Metal-Organic Nanotube Utilized as H₂S Sensor with High Selectivity and Sensitivity

Xuelian Xin, Fangna Dai,* Fugang Li, Xin Jin, Rongming Wang,* Daofeng Sun*

State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum (East China), Qingdao, Shandong 266580, China.

Email: dfsun@upc.edu.cn., rmwang@upc.edu.cn, fndai@upc.edu.cn*

CONTENTS

1.	Materials and methods2
2.	Synthetic strategy2
3.	PXRD of CD-MONT-2 2
4.	PXRD of CD-MONT-2' test papers
5.	The decrease of fluorescence intensities with the increasement of Na ₂ S
6.	Fluorescent spectra of the CD-MONT-2' in H_2O with different substances4
7.	The relative fluorescent intensity of I_0/I at 432 nm with 5 μM of Na_2S , and 50 μM of
inorganic salts, reducing agents, amino acids and ROS5	
8.	The XPS spectra of Pb, C and O of CD-MONT-2' and CD-MONT-2'-derivatives5
9.	FTIR spectra of beta-CD, CD-MONT-2' and CD-MONT-2'-derivatives6
10.	TEM image and SEAD of obtained CD-MONT-2' and CD-MONT-2' -derivatives6

- 1. Materials and methods. All chemicals and solvents are purchased and used as received without further purification. ^tBuOOH could be used to induce ROS. The H₂S gas was made by the reaction of FeS and H₂SO₄ (H₂SO₄ : H2O = 2 : 3 [v/v]) in a flask, and collected in a flask of 150 ml for an hour through a desiccant of P₂O₅ and waste gas is absorbed by a NaOH solution at the end of equipment.
- 2. Synthetic strategy: PbCl₂ (0.80 mmol, 0.2250 g) and β-cyclodextrin (β-CD) (0.10 mmol, 0.1150 g) were suspended in 30 mL distilled water, and then stirred at 80 °C for an hour. The mixture is cooled to room temperature and filtered. The obtained solution is transformed to glass vial with a diameter of 1.6 centimeter, and then the vial was cooled to 4 °C to make cyclohexanol become solid state. Subsequently, the triethylamine was layered onto the solid cyclohexanol, and the vial was sealed and heated at 110 °C for 50 hours. After cooling, the colourless rod-like crystals were collected by filtration and washed with water.

3. PXRD of CD-MONT-2.

Fig. S1 PXRD patterns of simulated based on crystal data, as-synthesized and after heated at 120 °C for an hour.

4. PXRD of CD-MONT-2' test papers.

Fig. S2 PXRD patterns of the simulated one from single-crystal data of **CD-MONT-2**, **CD-MONT-2'** and **CD-MONT-2'**-based test papers.

5. The decrease of fluorescence intensities with the increasement of Na₂S

Fig. S3 The decrease of fluorescence intensities with the increasement of Na₂S.

6. Fluorescent spectra of the CD-MONT-2' in H₂O with different substances.

Fig. S4 Fluorescent spectra of 1 mg/mL **CD-MONT-2'** in H₂O treated with: a) ^tBuOOH, b) Na₂CO₃, c) Na₂SO₄, d) THU, e) L-Cys, f) Gln, g) NaClO, h) Glucose, i) H₂O₂, j) NaCl, k) DL-Tyr, l) KCl, m) NaH₂PO₄, n) GSH, o) CH₃COONa, p) Na₂SO₃, q) KCl, and r) Kl.

7. The relative fluorescent intensity of I_0/I at 432 nm with 5 μ M of Na₂S, and 50 μ M of inorganic salts, reducing agents, amino acids and ROS..

Fig. S5 The relative fluorescent intensity of I_0/I at 432 nm with 5 μ M of Na₂S, and 50 μ M of inorganic salts, reducing agents, amino acids and ROS.

8. The XPS spectra of Pb, C and O of CD-MONT-2' and CD-MONT-2'-derivatives.

Fig. S6 The XPS spectra of a) Pb 4f, b) C 1s and c) O 1s of **CD-MONT-2'**; the XPS spectra of d) C 1s and e) O 1s of **CD-MONT-2'-derivatives**.

9. FTIR spectra of beta-CD, CD-MONT-2' and CD-MONT-2'-derivatives.

Fig. S7 FTIR spectra of beta-CD a), CD-MONT-2' b) and CD-MONT-2'-derivatives c).

10. TEM image and SEAD of obtained CD-MONT-2' and CD-MONT-2'-derivatives.

Fig. S8 TEM image and SEAD of obtained **CD-MONT-2'** (a, b and c) and **CD-MONT-2'- derivatives** (d, e and f).