Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2017

```
1 Electronic Supplementary Information
```

```
23
```

4 Optimisation of an extraction/leaching procedure for the characterization and quantification 5 of titanium dioxide (TiO<sub>2</sub>) nanoparticles in the aquatic environment using SdFFF-ICP-MS 6 and SEM EDX analysis.

7

8 Florian Dutschke<sup>a,b</sup>, Johanna Irrgeher<sup>a</sup>, Daniel Pröfrock<sup>a\*</sup>

9

10

11 ª Helmholtz-Zentrum Geesthacht, Zentrum für Material- und Küstenforschung, Department of

12 Marine Bioanalytical Chemistry, Max-Planck Str. 1, 21502 Geesthacht,

13 Germany.

14

15 <sup>b</sup> University of Hamburg, Institute of Applied and Inorganic Chemistry, 20146 Hamburg,

16 Germany.

17

18

19 \*Corresponding Author E-mail: daniel.proefrock@hzg.de

20

21

#### 23 Used equations

25 Calculation of the Settling time  $(t_s)$  for the size cut-off using a centrifuge

$$t_{s} = \ln\left(\frac{r_{out}}{r_{in}}\right) \frac{18\,\eta}{4\pi^{2}\Delta p d^{2} (\frac{rpm}{60})^{2}}$$
(ESI 1)

29 t<sub>s</sub>: settling time (min)

 $r_{out}$ : outer diameter of the centrifuge tube (cm)

 $r_{in}$ : inner diameter of the centrifuge tube (cm)

 $\eta$ : viscosity kg/(s·m)

- $\Delta \rho$ : delta density (water and TiO<sub>2</sub>, kg/m<sup>3</sup>)
- 34 rpm: rounds per min
- 35 d: diameter of the particles (m)

## 38 Calculation of the particle size distribution

40 The following equations have been used to perform different calculations related with the analysis of nano 41 particles via SdFFF. The SdFFF theoretical basis for the conversion of retention time data into size 42 distribution is described in detail elsewhere.<sup>1,2</sup> Briefly, the retention ratio R obtained experimentally by 43 SdFFF is a function of the layer thickness  $\lambda$ :

$$R = \frac{t_0}{t_r} = 6\lambda \left[ \operatorname{coth}\left(\frac{1}{2\lambda}\right) - 2\lambda \right]$$
(ESI 2)

3)

47 Being  $t_0$  the void time and  $t_r$  the retention time.

49 In SdFFF, the layer thickness  $\lambda$  is expressed as:

$$\lambda = \frac{kT}{m\omega^2 rw}$$
(ESI

*k* the Boltzmann constant

T the absolute temperature in K

w the channel thickness (m)

 $\omega$  the angular velocity

57 r the radius of the centrifuge from rotation axis to the channel (m).

- 58 m mass of the particle
- $t_r$  retention time (min)

61 The particle size can be calculated from the retention time obtaining a size distribution profile by applying

62 the equation:

$$d = \left[ \left( \frac{6kT}{\pi G w \Delta \rho t_0} \right) t_r \right]^{1/3}$$
(ESI 4)

- d the diameter of the particles according to FFF theory
- *k* the Boltzmann constant
- *T* the absolute temperature in K
- w the channel thickness (m)
- $t_0$  void time (min)
- 71 r the radius of the centrifuge from rotation axis to the channel (m)
- 72 t<sub>r</sub> retention time (min)
- 73 G the centrifugal acceleration
- $\Delta \rho$  the difference between the density of the particle and the one of the carrier liquid.

- 77 <u>Tables</u>
- 79 ESI Table 1 Detailed information related with the different sampling sites

| Sample name            | Sampling date | Air- / Water | pH-Value | Conductivity |
|------------------------|---------------|--------------|----------|--------------|
|                        |               | temperature  |          | (µS/cm)      |
|                        |               | (°C)         |          |              |
| December 2016 (west)   | 20.12.2016    | 3 / 5.2      | 7.83     | 673          |
| December 2016 (south)  | 20.12.2016    | 2 / 5.3      | 7.68     | 699          |
| September 2016 (west)  | 23.09.2016    | 17 / 19.6    | 8.15     | 690          |
| September 2016 (south) | 23.09.2016    | 12 / 19.6    | 8.06     | 689          |
| June 2016 (west)       | 01.06.2016    | 24 / 19.2    | 8.08     | 684          |
| June 2016 (south)      | 01.06.2016    | 21 / 19.1    | 7.98     | 685          |
| June 2015 (west)       | 01.06.2015    | 22 / 18.5    | 8.14     | 674          |

| June 2015 (south) | 01.06.2015 | 20 / 18.5 | 8.09 | 677 |
|-------------------|------------|-----------|------|-----|
|                   |            |           |      |     |

81 ESI Table 2 Instrumental parameters used for the operation of SdFFF (CF2000, PostNova Analytics) and

82 ICP-MS/MS (Agilent 8800, Agilent Technologies) coupling

# SdFFF

| Tip to tip channel length     | 89.5 cm                                            |
|-------------------------------|----------------------------------------------------|
| Channel breadth               | 2.1 cm                                             |
| Channel Thickness (w)         | 0.0231 cm                                          |
| Injection volume              | 21.54 μL                                           |
| Void volume (V <sup>0</sup> ) | 2.0 mL                                             |
| Relaxation time               | 5 min                                              |
| Channel flow rate             | 0.5 mL/min                                         |
| Initial rotation speed        | 2500 rpm                                           |
| Power field programming       | $t_1 = 8 \min$                                     |
|                               | (focus time at the initial field), and $t_a = -64$ |
|                               | (field decay parameter)                            |
| Final field                   | 100 rpm                                            |
| Carrier solution              | 0.15 mmol/L NaOH                                   |
|                               |                                                    |

## ICP-MS/MS

| RF-Power                  | 1600 W                                                 |
|---------------------------|--------------------------------------------------------|
| Torch/Injector            | Quartz/Quartz                                          |
| Spray chamber             | Quartz                                                 |
| Sampler and skimmer cones | Cu-Ni, Ni                                              |
| Carrier gas flow          | 1.12 L/min                                             |
| Makeup gas flow           | 0.11 L/min                                             |
| Cell gas flow rate (He)   | 4.5 mL/min                                             |
| Q1 bias                   | -2 V                                                   |
| Qctopole bias             | -5 V                                                   |
| Dwell times               | 0.3 s                                                  |
| Tuning solution           | 10 µg/L (Li, Y, Tl, Ce in 2 % (w/w) HNO <sub>3</sub> ) |
|                           |                                                        |

<sup>83</sup> 

84 ESI Table 3 Details of the used microwave assisted acid digestion power, temperature and time program

| Energy / Temperature | Time    |
|----------------------|---------|
| 1600 W / 180 °C      | 60 min  |
| 1600 W / 180 °C      | 180 min |
| 1600 W / 180 °C      | 60 min  |

87 ESI Table 4 Instrumental parameter used during the measurement of the sediment digests via ICP-

88 MS/MS (Agilent 8800, Agilent Technologies)

| RF-Power   | r                                             | 1550 W                                                                   |
|------------|-----------------------------------------------|--------------------------------------------------------------------------|
| Torch/Inje | ector                                         | Quartz/Saphire                                                           |
| Spray cha  | mber                                          | PFA                                                                      |
| Sampler a  | nd skimmer cones                              | Cu-Ni, Ni                                                                |
| Carrier ga | is flow                                       | 1.12 L/min                                                               |
| Makeup g   | as flow                                       | 0.11 L/min                                                               |
| Cell gas f | low rate (H <sub>2</sub> ,He,O <sub>2</sub> ) | 6 mL/min, 4.5 mL/min, 2.5 mL/min (30 %)                                  |
| Q1 bias    |                                               | -2 V                                                                     |
| Qctopole   | bias                                          | -5 V                                                                     |
| Dwell tim  | les                                           | 0.3 s                                                                    |
| Tuning sc  | olution                                       | 10 µg/L (Li, Y, Tl, Ce in 2 % ( <i>w</i> / <i>w</i> ) HNO <sub>3</sub> ) |
| 89         |                                               |                                                                          |
| 90         |                                               |                                                                          |
| 91         |                                               |                                                                          |
| 92         |                                               |                                                                          |
| 93         |                                               |                                                                          |
| 94         |                                               |                                                                          |
| 95         |                                               |                                                                          |
| 96         |                                               |                                                                          |
| 97         |                                               |                                                                          |
| 98         |                                               |                                                                          |
| 99         |                                               |                                                                          |
| 100        |                                               |                                                                          |
| 101        |                                               |                                                                          |
| 102        |                                               |                                                                          |
| 103        |                                               |                                                                          |
| 104        |                                               |                                                                          |
| 105        |                                               |                                                                          |
| 106        |                                               |                                                                          |
| 107        |                                               |                                                                          |
| 108        |                                               |                                                                          |
| 109        |                                               |                                                                          |
| 110        |                                               |                                                                          |
| 111        |                                               |                                                                          |

### 112 Figures





ESI Figure 1 Decay program used for the separation of the particles with the SdFFF system





ESI Figure 2 Comparison of the intensity data from the ICP-MS measurement and the size-information obtained based on mathematical calculations using the MALS (dots) signal for the reference material NIST SRM 1898 before (black) and after (grey) the application of the developed sample pretreatment procedure.





126 ESI Figure 3 Fractograms and size-distribution profiles after spiking and extraction of a natural sediment 127 test sample to compare the effects of different sample preparation procedures (freeze drying vs. direct 128 preparation of the wet fresh sample) including data on the measured gyratic diameter *dg*.

129 130



131

ESI Figure 4 Different fractograms obtained for test mixtures of NIST SRM 2702 spiked with 100 mg/kg
NIST SRM 1898 using different extraction solvents (grey cross (water), grey circle (0.05% Tego W752),

134 grey box (0.05% Fl-70))





137 ESI Figure 5 Compilation of different fractograms showing the particle size-distribution of the

138 investigated lake sediment samples. (A) December 2016 south, (B) December 2016 west, (C) September

139 2016 south, (D) September 2016 west, (E) June 2016 south, (F) June 2016 west, (G) June 2015 south,

140 (H)June 2015 west.