Stable Isotope Labelling Assisted LC-MS Method for Determination of Polyamines in Micro Tissues of Rice

Qiu-Yi Wang¹, Tiantian Ye¹, Shu-Jian Zheng¹, Er-Cui Ye¹, Ren-Qi Wang^{1,2}, Yu-Qi

Feng^{1*}

¹Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, PR China

² College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China **Table S1.** Recoveries and intra- and inter-day precisions for the detection of PAs in root extracts and leaf extracts by stable isotope labeling combined UPLC-ESI-MS/MS analysis.

Analytes	Spiked amount (pmol/mL)	Root extracts			Leaf extracts		
		RSD (%)		_	RSD (%)		
		Intra-day	Inter-day	- Recovery (%)	Intra-day	Inter-day	- Recovery (%)
		(n=3)	(n=3)		(n=3)	(n=3)	
Dap	2	1.2	9.1	116.5	10.8	2.8	95.1
	10	5.7	13.0	113.1	13.9	1.1	92.3
	100	5.0	12.0	101.9	9.3	2.1	96.8
Put	20	4.1	6.7	88.3	3.2	2.2	83.7
	100	3.7	4.8	97.9	9.7	4.3	98.6
	1000	4.8	9.6	119.9	9.2	8.9	121.5
Cad	2	7.6	5.3	116.7	0.5	4.0	122.5
	10	5.6	1.6	126.4	7.6	3.5	122.4
	100	2.6	4.7	115.4	6.4	4.1	116.3
Orn	20	13.5	10.1	97.5	11.8	8.5	100.6
	100	6.6	12.1	79.2	2.6	19	93.6
	1000	0.9	13.3	71.9	2.4	1.0	87.8
Spd	20	8.8	13.0	83.9	6.7	5.1	98.1
	100	11.4	16.2	89.0	10.8	2.1	91.7
	1000	5.0	17.1	127.5	8.5	3.2	124.4

	2	3.5	14.1	116.9	10.8	6.1	126.7
Spn	10	10.2	16.1	89.8	8.3	9.8	79.9
	100	2.1	14.1	108.9	18.9	19.5	85.2

Figure S2

